whisper深入-语者分离
文章目录
- 学习目标:如何使用whisper
- 学习内容一:whisper 转文字
- 1.1 使用whisper.load_model()方法下载,加载
- 1.2 使用实例对文件进行转录
- 1.3 实战
- 学习内容二:语者分离(pyannote.audio)pyannote.audio是huggingface开源音色包
- 第一步:安装依赖
- 第二步:创建key
- 第三步:测试pyannote.audio
- 学习内容三:整合
学习目标:如何使用whisper
学习内容一:whisper 转文字
1.1 使用whisper.load_model()方法下载,加载
model=whisper.load_model(参数)
- name 需要加载的模型,如上图
- device:默认有个方法,有显存使用显存,没有使用cpu
- download_root:下载的根目录,默认使用
~/.cache/whisper
- in_memory: 是否将模型权重预加载到主机内存中
返回值
model : Whisper
Whisper语音识别模型实例
def load_model(name: str,device: Optional[Union[str, torch.device]] = None,download_root: str = None,in_memory: bool = False,
) -> Whisper:"""Load a Whisper ASR modelParameters----------name : strone of the official model names listed by `whisper.available_models()`, orpath to a model checkpoint containing the model dimensions and the model state_dict.device : Union[str, torch.device]the PyTorch device to put the model intodownload_root: strpath to download the model files; by default, it uses "~/.cache/whisper"in_memory: boolwhether to preload the model weights into host memoryReturns-------model : WhisperThe Whisper ASR model instance"""if device is None:device = "cuda" if torch.cuda.is_available() else "cpu"if download_root is None:default = os.path.join(os.path.expanduser("~"), ".cache")download_root = os.path.join(os.getenv("XDG_CACHE_HOME", default), "whisper")if name in _MODELS:checkpoint_file = _download(_MODELS[name], download_root, in_memory)alignment_heads = _ALIGNMENT_HEADS[name]elif os.path.isfile(name):checkpoint_file = open(name, "rb").read() if in_memory else namealignment_heads = Noneelse:raise RuntimeError(f"Model {name} not found; available models = {available_models()}")with (io.BytesIO(checkpoint_file) if in_memory else open(checkpoint_file, "rb")) as fp:checkpoint = torch.load(fp, map_location=device)del checkpoint_filedims = ModelDimensions(**checkpoint["dims"])model = Whisper(dims)model.load_state_dict(checkpoint["model_state_dict"])if alignment_heads is not None:model.set_alignment_heads(alignment_heads)return model.to(device)
1.2 使用实例对文件进行转录
result = model.transcribe(file_path)
def transcribe(model: "Whisper",audio: Union[str, np.ndarray, torch.Tensor],*,verbose: Optional[bool] = None,temperature: Union[float, Tuple[float, ...]] = (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),compression_ratio_threshold: Optional[float] = 2.4,logprob_threshold: Optional[float] = -1.0,no_speech_threshold: Optional[float] = 0.6,condition_on_previous_text: bool = True,initial_prompt: Optional[str] = None,word_timestamps: bool = False,prepend_punctuations: str = "\"'“¿([{-",append_punctuations: str = "\"'.。,,!!??::”)]}、",**decode_options,
):"""将音频转换为文本。参数:- model: Whisper模型- audio: 音频文件路径、NumPy数组或PyTorch张量- verbose: 是否打印详细信息,默认为None- temperature: 温度参数,默认为(0.0, 0.2, 0.4, 0.6, 0.8, 1.0)- compression_ratio_threshold: 压缩比阈值,默认为2.4- logprob_threshold: 对数概率阈值,默认为-1.0- no_speech_threshold: 无语音信号阈值,默认为0.6- condition_on_previous_text: 是否根据先前的文本进行解码,默认为True- initial_prompt: 初始提示,默认为None- word_timestamps: 是否返回单词时间戳,默认为False- prepend_punctuations: 前缀标点符号,默认为"\"'“¿([{-"- append_punctuations: 后缀标点符号,默认为"\"'.。,,!!??::”)]}、"- **decode_options: 其他解码选项返回:- 转录得到的文本"""
1.3 实战
建议load_model添加参数
- download_root:下载的根目录,默认使用
~/.cache/whisper
transcribe方法添加参数 - word_timestamps=True
import whisper
import arrow# 定义模型、音频地址、录音开始时间
def excute(model_name,file_path,start_time):model = whisper.load_model(model_name)result = model.transcribe(file_path,word_timestamps=True)for segment in result["segments"]:now = arrow.get(start_time)start = now.shift(seconds=segment["start"]).format("YYYY-MM-DD HH:mm:ss")end = now.shift(seconds=segment["end"]).format("YYYY-MM-DD HH:mm:ss")print("【"+start+"->" +end+"】:"+segment["text"])if __name__ == '__main__':excute("large","/root/autodl-tmp/no/test.mp3","2022-10-24 16:23:00")
学习内容二:语者分离(pyannote.audio)pyannote.audio是huggingface开源音色包
第一步:安装依赖
pip install pyannote.audio
第二步:创建key
https://huggingface.co/settings/tokens
第三步:测试pyannote.audio
- 创建实例:Pipeline.from_pretrained(参数)
- 使用GPU加速:import torch # 导入torch库
pipeline.to(torch.device(“cuda”)) - 实例转化音频pipeline(“test.wav”)
from_pretrained(参数)
- cache_dir:路径或str,可选模型缓存目录的路径。默认/pyannote"当未设置时。
pipeline(参数)
- file_path:录音文件
- num_speakers:几个说话者,可以不带
from pyannote.audio import Pipeline
pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization@2.1", use_auth_token="申请的key")# send pipeline to GPU (when available)
import torch
device='cuda' if torch.cuda.is_available() else 'cpu'
pipeline.to(torch.device(device))# apply pretrained pipeline
diarization = pipeline("test.wav")
print(diarization)
# print the result
for turn, _, speaker in diarization.itertracks(yield_label=True):print(f"start={turn.start:.1f}s stop={turn.end:.1f}s speaker_{speaker}")
# start=0.2s stop=1.5s speaker_0
# start=1.8s stop=3.9s speaker_1
# start=4.2s stop=5.7s speaker_0
# ...
学习内容三:整合
这里要借助一个开源代码,用于整合以上两种产生的结果
报错No module named 'pyannote_whisper'
如果你使用使用AutoDL平台,你可以使用学术代理
加速
source /etc/network_turbo
git clone https://github.com/yinruiqing/pyannote-whisper.git
cd pyannote-whisper
pip install -r requirements.txt
这个错误可能是由于缺少或不正确安装了所需的 sndfile 库。sndfile 是一个用于处理音频文件的库,它提供了多种格式的读写支持。
你可以尝试安装 sndfile 库,方法如下:
在 Ubuntu 上,使用以下命令安装:sudo apt-get install libsndfile1-dev
在 CentOS 上,使用以下命令安装:sudo yum install libsndfile-devel
在 macOS 上,使用 Homebrew 安装:brew install libsndfile
然后重新执行如上指令
在项目里面写代码就可以了,或者复制代码里面的pyannote_whisper.utils模块代码
import os
import whisper
from pyannote.audio import Pipeline
from pyannote_whisper.utils import diarize_text
import concurrent.futures
import subprocess
import torch
print("正在加载声纹模型")
pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization@2.1",use_auth_token="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")
output_dir = '/root/autodl-tmp/no/out'
print("正在whisper模型")
model = whisper.load_model("large", device="cuda")# MP3转化为wav
def convert_to_wav(path):new_path = ''if path[-3:] != 'wav':new_path = '.'.join(path.split('.')[:-1]) + '.wav'try:subprocess.call(['ffmpeg', '-i', path, new_path, '-y', '-an'])except:return path, 'Error: Could not convert file to .wav'else:new_path = ''return new_path, Nonedef process_audio(file_path):file_path, retmsg = convert_to_wav(file_path)print(f"===={file_path}=======")asr_result = model.transcribe(file_path, initial_prompt="语音转换")pipeline.to(torch.device('cuda'))diarization_result = pipeline(file_path, num_speakers=2)final_result = diarize_text(asr_result, diarization_result)output_file = os.path.join(output_dir, os.path.basename(file_path)[:-4] + '.txt')with open(output_file, 'w') as f:for seg, spk, sent in final_result:line = f'{seg.start:.2f} {seg.end:.2f} {spk} {sent}\n'f.write(line)if not os.path.exists(output_dir):os.makedirs(output_dir)wave_dir = '/root/autodl-tmp/no'# 获取当前目录下所有wav文件名
wav_files = [os.path.join(wave_dir, file) for file in os.listdir(wave_dir) if file.endswith('.mp3')]# 处理每个wav文件
# with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor:
# executor.map(process_audio, wav_files)
for wav_file in wav_files:process_audio(wav_file)
print('处理完成!')
相关文章:
whisper深入-语者分离
文章目录 学习目标:如何使用whisper学习内容一:whisper 转文字1.1 使用whisper.load_model()方法下载,加载1.2 使用实例对文件进行转录1.3 实战 学习内容二:语者分离(pyannote.audio)pyannote.audio是huggi…...
LuaJava操作Java的方法
最近在学习lua,然后顺便看了下luaj,可能用的人比较少,网上关于luaj的文章较少,其中在网上找到这个博主的相关文章,很详细,对于要学习luaj的小伙伴可以两篇一起查看,本文在此基础上进行扩展。 …...
oracle怎样才算开启了内存大页?
oracle怎样才算开启了内存大页? 关键核查下面三点: 1./etc/sysctl.conf vm.nr_hugepages16384这是给了32G,计划sga给30G,一般需多分配2-4G sysctl -p生效 看cat /proc/meminfo|grep Huge啥结果? 这种明显是配了…...
【halcon深度学习之那些封装好的库函数】determine_dl_model_detection_param
determine_dl_model_detection_param 目标检测的数据准备过程中的有一个库函数determine_dl_model_detection_param “determine_dl_model_detection_param” 直译为 “确定深度学习模型检测参数”。 这个过程会自动针对给定数据集估算模型的某些高级参数,强烈建议…...
跟着我学Python进阶篇:01.试用Python完成一些简单问题
往期文章 跟着我学Python基础篇:01.初露端倪 跟着我学Python基础篇:02.数字与字符串编程 跟着我学Python基础篇:03.选择结构 跟着我学Python基础篇:04.循环 跟着我学Python基础篇:05.函数 跟着我学Python基础篇&#…...
neo4j-Py2neo使用
neo4j-Py2neo(一):基本库介绍使用 py2neo的文档地址:https://neo4j-contrib.github.io/py2neo/ py2neo的本质是可以采用两种方式进行操作,一种是利用cypher语句,一种是使用库提供的DataTypes,Data类的实例需要和远程…...
uint29传输格式
前言 不知道谁想出来的。 反正我是想不到。 我看网上也没人讲这个。 写篇博客帮一下素未谋面的网友。 uint29 本质上是网络传输的时候,借用至多4字节Bytes,表达29位的无符号整数。 读8位数字,判断小于128? 是的话,返回末7位…...
Linux:终端定时自动注销
这样防止了,当我们临时离开电脑这个空隙,被坏蛋给趁虚而入 定几十秒或者分钟,如果这个时间段没有输入东西那么就会自动退出 全局生效 这个系统中的所有用户生效 vim /etc/profile在末尾加入TMOUT10 TMOUT10 这个就是10 秒,按…...
STM32F103RCT6开发板M3单片机教程06--定时器中断
前言 除非特别说明,本章节描述的模块应用于整个STM32F103xx微控制器系列,因为我们使用是STM32F103RCT6开发板是mini最小系统板。本教程使用是(光明谷SUN_STM32mini开发板) STM32F10X定时器(Timer)基础 首先了解一下是STM32F10X…...
数据库故障Waiting for table metadata lock
场景:早上来发现一个程序,链接mysql数据库有点问题,随后排查,因为容器在k8s里面。所以尝试重启了pod没有效果 一、重启pod: 这里是几种在Kubernetes中重启Pod的方法: 删除Pod,利用Deployment重建 kubectl delete pod mypodDepl…...
Springboot数据校验与异常篇
一、异常处理 1.1Http状态码 HTTP状态码是指在HTTP通信过程中,服务器向客户端返回的响应状态。它通过3位数字构成,第一个数字定义了响应的类别,后两位数字没有具体分类作用。以下是常见的HTTP状态码及其含义: - 1xx(信…...
第三十六章 XML 模式的高级选项 - 创建子类型的替换组
文章目录 第三十六章 XML 模式的高级选项 - 创建子类型的替换组创建子类型的替换组将子类限制在替换组中 第三十六章 XML 模式的高级选项 - 创建子类型的替换组 创建子类型的替换组 XML 模式规范还允许定义替换组,这可以是创建选择的替代方法。语法有些不同。无需…...
堆与二叉树(上)
本篇主要讲的是一些概念,推论和堆的实现(核心在堆的实现这一块) 涉及到的一些结论,证明放到最后,可以选择跳过,知识点过多,当复习一用差不多,如果是刚学这一块的,建议打…...
HBase查询的一些限制与解决方案
Apache HBase 是一个开源的、非关系型、分布式数据库,它是 Hadoop 生态系统的一部分,用于存储和处理大量的稀疏数据。HBase 在设计上是为了提供快速的随机读写能力,但与此同时,它也带来了一些查询上的限制: 没有SQL支持…...
软件开发 VS Web开发
我的新书《Android App开发入门与实战》已于2020年8月由人民邮电出版社出版,欢迎购买。点击进入详情 目录 介绍: 角色和职责: 软件开发人员: Web开发人员: 技能: 软件开发人员: Web开发人…...
基于Springboot的旅游网站设计与实现(论文+调试+源码)
项目描述 临近学期结束,还是毕业设计,你还在做java程序网络编程,期末作业,老师的作业要求觉得大了吗?不知道毕业设计该怎么办?网页功能的数量是否太多?没有合适的类型或系统?等等。这里根据疫情当下,你想解决的问…...
【从零开始学习--设计模式--策略模式】
返回首页 前言 感谢各位同学的关注与支持,我会一直更新此专题,竭尽所能整理出更为详细的内容分享给大家,但碍于时间及精力有限,代码分享较少,后续会把所有代码示例整理到github,敬请期待。 此章节介绍策…...
条款6:若不想使用编译器自动生成的函数,就该明确拒绝
有些场景我们不需要编译器默认实现的构造函数,拷贝构造函数,赋值函数,这时候我们应该明确的告诉编译器,我们不需要,一个可行的方法是将拷贝构造函数和赋值函数声明为private。 class HomeForSale { ... }; HomeForSal…...
零基础也能制作家装预约咨询小程序
近年来,随着互联网的快速发展,越来越多的消费者倾向于使用手机进行购物和咨询。然而,许多家装实体店却发现自己的客流量越来越少,急需一种新的方式来吸引顾客。而开发家装预约咨询小程序则成为了一种利用互联网技术来解决这一问题…...
Mybatis的插件运⾏原理,如何编写⼀个插件?
🚀 作者主页: 有来技术 🔥 开源项目: youlai-mall 🍃 vue3-element-admin 🍃 youlai-boot 🌺 仓库主页: Gitee 💫 Github 💫 GitCode 💖 欢迎点赞…...
C++复合数据类型:字符数组|读取键盘输入|简单读写文件
文章目录 字符数组(C风格字符串)读取键盘输入使用输入操作符读取单词读取一行信息getline使用get读取一个字符 读写文件 字符数组(C风格字符串) 字符串就是一串字符的集合,本质上其实是一个“字符的数组”。 在C中为了…...
Windows11环境下配置深度学习环境(Pytorch)
目录 1. 下载安装Miniconda2. 新建Python3.9虚拟环境3. 下载英伟达驱动4. 安装CUDA版Pytorch5. CPU版本pytorch安装6. 下载并配置Pycharm 1. 下载安装Miniconda 下载安装包:镜像文件地址 将Miniconda相关路径添加至系统变量的路径中。 打开Anaconda Powershell Pr…...
泛型深入理解
泛型的概述 泛型:是JDK5中引入的特性,可以在编译阶段约束操作的数据类型,并进行检查。 泛型的格式:<数据类型>; 注意:泛型只能支持引用数据类型。 集合体系的全部接口和实现类都是支持泛型的使用的。 泛型的…...
Linux内核模块
文章目录 一、内核模块介绍二、模块讲解1、最简模块代码:2、模块三要素3、常用操作命令3.1、 lsmod:显示已加载模块状态3.2、 insmod:载入模块3.3、rmmod:卸载模块3.4、dmesg:显示信息3.5、modinfo:显示ker…...
Java 栈和队列的交互实现
文章目录 队列和栈的区别一.用队列模拟实现栈1.1入栈1.2出栈1.3返回栈顶元素1.4判断栈是否为空 二.用栈模拟实现队列2.1 入队2.2出队2.3peek2.4判断队列是否为空 三.完整代码3.1 队列模拟实现栈3.2栈模拟实现队列 队列和栈的区别 栈和队列都是常用的数据结构,它们的…...
HarmonyOS应用开发者高级认证满分指南
声明:由于HarmonyOS应用开发者高级认证的题库一直在变,所以文章中的题目直做参考。 1. 判断题 云函数打包完成后,需要到APPGallery Connect创建对应函数的触发器才可以在端侧中调用。 【错】每一个自定义组件都有自己的生命周期。 【对】基…...
CSharp中Blazor初体验
Blazor 是一个由微软开发的开源 Web 框架,用于构建富客户端 Web 应用程序使用 C# 语言和 .NET 平台。Blazor 允许开发人员使用 C# 语言来编写前端 Web 应用程序,而不需要像传统的 JavaScript 框架(如 Angular、React 或 Vue.js)那…...
Linux下新建用户,并进行授权
注意:以下操作需要在root用户下! 新增用户 adduser 用户名设置密码 passwd 用户名更改目录所有者命令 chown -R 用户名:用户名 目录更改目录权限命令 chmod -R 755 目录...
STM32为基础的模拟I2C通用8bit和16bit读取以及多字节读取
GPIO模拟I2C驱动的通用代码,I2C的寄存器地址有8位和16位的,主要解决了同一个MCU同时处理8位和16位寄存器地址芯片时候的驱动问题。 typedef enum {IIC_8BIT_BASE_ADDR,IIC_16BIT_BASE_ADDR }iic_bits_e; typedef struct {uint8_t DevAddr;uint16_t RegA…...
算法训练营Day19
#Java #二叉树 #双指针 开源学习资料 Feeling and experiences: 二叉搜索树的最小绝对差:力扣题目链接 给你一个二叉搜索树的根节点 root ,返回 树中任意两不同节点值之间的最小差值 。 差值是一个正数,其数值等于两值之差的…...
建设公司网站费用/提高工作效率的句子
1、工具说明 写报告的时候为了细致性,要把IP地址对应的地区给整理出来。500多条IP地址找出对应地区复制粘贴到报告里整了一个上午。 为了下次更好的完成这项重复性很高的工作,所以写了这个小的脚本。 V2.0 写入到XLS中 2、使用方法 把IP写到.txt文件中就…...
做网站需求报告/自动点击关键词软件
1. 函数的任意数目的参数你可能知道PHP允许你定义一个默认参数的函数。但你可能并不知道PHP还允许你定义一个完全任意的参数的函数下面是一个示例向你展示了默认参数的函数:// 两个默认参数的函数function foo($arg1 , $arg2 ) { echo "arg1: $arg1\n&quo…...
凡科网做网站怎么样/英文外链平台
VB.NET中对于表格数据的显示经常使用到DataGridView控件,其以丰富多样的数据表呈现形式被程序猿喜爱。本人在做一个小系统中运用DataGridView控件的部分属性,这些功能的使用在使用之初比較不易去理清,随着系统接近尾声,如今对一些…...
建设工程安全监督备案网站/如何弄一个自己的网站
本文由Jamie Shields和Wern Ancheta进行了同行评审。 感谢所有SitePoint的同行评审人员使SitePoint内容达到最佳状态! SoundCloud提供了一个API,使开发人员可以获取他们想要的几乎所有数据。 但是它的用法可能会引起混淆,尤其是对于初学者而言…...
怎么用织梦模板做网站/如何网络推广新产品
2019独角兽企业重金招聘Python工程师标准>>> wampserver开启php_ldap扩展问题记录 在win7(64位)下使用wampserver,开启php_ldap扩展问题,除了要在php.ini中配置外,还要把php_ldap必须的 libsasl.dll依赖放…...
网站设计费用志/网络营销的几种模式
域名泛解析什么意思 在域名前添加任何子域名,均可访问到所指向的网站。也就是客户的域名yfi6.com之下所设的*.yfi6.com全部域名均可访问。 域名泛解析怎么设置 泛域名解析是指将*.域名解析到同一IP。 泛域名解析和域名解析有何不同? 泛域名解析是指&a…...