当前位置: 首页 > news >正文

ChatGLM3-6B 的调用参数说明,chat 与stream_chat 接口函数的参数说明

ChatGLM3-6B 是一个语言大模型,最近在评估这个模型,但发现它的文档有限,只能从demo代码中猜测调用的参数的含义,准确度是有限的;于是,通过查看源代码来研究,目前整理笔记如下:

ChatGLM3-6B 的调用接口有两个,一个是chat接口,一个是stream_chat接口

接口函数的实现位于代码 chatglm3-6b/blob/main/modeling_chatglm.py中

一、chat接口

chat接口的原型如下:

def chat(self, tokenizer, query: str, history: List[Dict] = None, role: str = "user",max_length: int = 8192, num_beams=1, do_sample=True, top_p=0.8, temperature=0.8, logits_processor=None,**kwargs):

参数说明如下:

参数名参数含义默认值
tokenizer用于处理输入和输出文本的tokenizer对象。由前面的 AutoTokenizer.from_pretrained 调用返回的对象
query str 类型,用户输入的任何文本
history List[Dict],可选参数;对话历史,每一项都是一个字典,包含角色('role')和内容('content')。None
role str, 可选参数;输入文本的角色,可以是'user'或者'assistant'。user
max_length int, 可选;生成文本的最大长度。8192
num_beamsint, 可选;Beam搜索的宽度,如果值大于1,则使用Beam搜索1
do_sample bool, 可选;是否从预测分布中进行采样,如果为True,则使用采样策略生成回复。True
top_p float, 可选;用于控制生成回复的多样性0.8
temperature float, 可选;控制生成文本的随机性的参数0.8
logits_processor LogitsProcessorList, 可选;用于处理和修改生成步骤中的logits的对象None
**kwargs其他传递给模型生成函数的参数

返回值:

response (str): 模型的响应文本。
history (List[Dict]): 更新后的对话历史。

二、stream_chat 接口

流式聊天函数,接受一段文本查询,返回模型的响应。这个函数返回的是一个生成器,可以在流式处理中使用。 

该接口函数的原型定义如下:

def stream_chat(self, tokenizer, query: str, history: List[Dict] = None, role: str = "user",past_key_values=None,max_length: int = 8192, do_sample=True, top_p=0.8, temperature=0.8,logits_processor=None, return_past_key_values=False, **kwargs):

参数说明如下:

 参数名参数含义默认值
tokenizer用于处理输入和输出文本的tokenizer对象。由前面的 AutoTokenizer.from_pretrained 调用返回的对象
querystr,必须参数;用户输入的任何聊天文本。
historyList[Dict], 可选;对话历史,每一项都是一个字典,包含角色('role')和内容('content')。None
rolestr, 可选: 输入文本的角色,可以是'user'或者'assistant'。user
past_key_valuesList[Tensor], 可选;用于transformer模型的过去的键值对None
max_lengthint, 可选: 生成文本的最大长度.8192
do_samplebool, 可选;是否从预测分布中进行采样True
top_pfloat, 可选: 用于控制生成回复的多样性。0.8
temperaturefloat, 可选;控制生成文本的随机性的参数0.8
logits_processorLogitsProcessorList, 可选;用于处理和修改生成步骤中的logits的对象。None
return_past_key_valuesbool, 可选): 是否返回过去的键值对,用于下一步的生成。False
**kwargs其他传递给模型生成函数的参数。

返回值:

response (str): 模型的响应文本。
history (List[Dict]): 更新后的对话历史。
past_key_values (List[Tensor], 可选): 如果return_past_key_values为True,返回用于下一步生成的过去的键值对。

相关文章:

ChatGLM3-6B 的调用参数说明,chat 与stream_chat 接口函数的参数说明

ChatGLM3-6B 是一个语言大模型,最近在评估这个模型,但发现它的文档有限,只能从demo代码中猜测调用的参数的含义,准确度是有限的;于是,通过查看源代码来研究,目前整理笔记如下: Chat…...

Vuex的学习-2

Vuex的核心概念 StateMutationAction 1.State State提供唯一的公共数据源,所有共享的数据都统一放在Store的State中进行存储。 const store new Vuex.Store({state : { count: 0 } }) 这是渲染的页面 组件访问数据的第一种方式 组件访问数据的第二种方式 // 1…...

智慧安防视频监控EasyCVR如何通过回调接口向第三方平台推送RTSP视频通道离线通知

安防视频监控系统EasyCVR能在局域网、公网、专网等复杂的网络环境中部署,可支持4G、5G、WiFi、有线等方式进行视频的接入与传输、处理和分发。平台能将接入的视频流进行汇聚、转码、多格式输出和分发,具体包括:RTMP、RTSP、HTTP-FLV、WebSock…...

Scrum项目管理流程及免费敏捷工具

​ 项目启动: 团队明确项目愿景、目标和范围,确定项目范围和优先级,并建立团队以及开展初步计划。 制定产品待办事项清单(Product Backlog): 定义项目所需功能、任务和需求列表,并按优先级排序…...

大型医院PACS系统源码,影像存储与传输系统源码,支持多种图像处理及三维重建功能

PACS系统是医院影像科室中应用的一种系统,主要用于获取、传输、存档和处理医学影像。它通过各种接口,如模拟、DICOM和网络,以数字化的方式将各种医学影像,如核磁共振、CT扫描、超声波等保存起来,并在需要时能够快速调取…...

HDFS NFS Gateway(环境配置,超级详细!!)

HDFS NFS Gateway简介: ​ HDFS NFS Gateway是Hadoop Distributed File System(HDFS)中的一个组件,它允许客户端通过NFS(Network File System,网络文件系统)与HDFS进行交互。具体来说,HDFS NFS…...

nginx 离线安装 https反向代理

这里写自定义目录标题 安装步骤1.安装nginx所需依赖1.1 安装gcc和gcc-c1.1.1下载依赖包1.1.2 上传依赖包1.1.3安装依赖 1.2 安装pcre1.2.1 下载pcre1.2.2 上传解压安装包1.2.3 编译安装 1.3 下载安装zlib1.3.1 下载zlib1.3.2 上传解压安装包1.3.3 编译安装 1.4 下载安装openssl…...

Linux Centos 配置 Docker 国内镜像加速

在使用 Docker 进行容器化部署时,由于国外的 Docker 镜像源速度较慢,我们可以配置 Docker 使用国内的镜像加速器,以提高下载和部署的效率。本文将介绍如何在 CentOS 系统上配置 Docker 使用国内镜像加速。 步骤一:安装 Docker 首…...

中心下标-----来自力扣

本题使用go语言完成: 思路:1.先求出整个数组的和 2.用一个循环整个和减去左和看是否等于右和,如果等于,返回索引下标 寻找数组的中心索引 给你一个整数数组 nums ,请计算数组的 中心下标 。 数组 中心下标 是数组的一…...

手写单链表(指针)(next域)附图

目录 创建文件: 具体实现: 首先是头插。 注意:一定要注意:再定义tmp时,要给它赋一个初始值(推荐使用 new list_next) 接着是尾插: 随后是中间插: 然后是最简单的改值&#xf…...

关于with torch.no_grad:的一些小问题

with torch.no_grad:是截断梯度记录的,新生成的数据的都不记录梯度,但是今天产生了一点小疑惑,如果存在多层函数嵌入,是不是函数内所有的数据都不记录梯度,验证了一下,确实是的。 import torch x torch.r…...

大创项目推荐 深度学习 机器视觉 人脸识别系统 - opencv python

文章目录 0 前言1 机器学习-人脸识别过程人脸检测人脸对其人脸特征向量化人脸识别 2 深度学习-人脸识别过程人脸检测人脸识别Metric Larning 3 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习 机器视觉 人脸识别系统 该项目…...

【PostGIS】空间数据库-常用空间函数

记录一些常用的空间函数: 1、转换函数 在几何图形和外部数据格式之间进行转换的函数。 -- 将文本表示转换为几何类型 -- 结果:0101000000000000000000F03F000000000000F03F SELECT st_geomfromtext(point(1 1),0);-- 将几何类型转换为文本表示 -- 结果…...

程序员的50大JVM面试问题及答案

文章目录 1.JDK、JRE、JVM关系?2.启动程序如何查看加载了哪些类,以及加载顺序?3. class字节码文件10个主要组成部分?4.画一下jvm内存结构图?5.程序计数器6.Java虚拟机栈7.本地方法栈8.Java堆9.方法区10.运行时常量池?…...

架构设计系列之前端架构和后端架构的区别和联系

前端架构和后端架构都是软件系统中最关键的架构层,负责处理不同方面的任务和逻辑,两者之间是存在一些区别和联系的,我会从以下几个方面来阐述: 一、定位和职责 前端架构 主要关注用户界面和用户体验,负责处理用户与…...

UE5 水材质注意要点

1、两个法线反向交替流动,可以去观感假的现象 2、水面延边的透明度低 3、增加水面延边的浪花 4、增加折射 折射要整体质量至少在High才有效果 改为半透明材质没有法线信息? 5、处理反射效果 勾选为true 找到这个放在水域 勾为false,即可有非…...

数据安全扫描仪荣膺网络安全优秀创新成果大赛优胜奖 - 凸显多重优势

近日,由中国网络安全产业联盟(CCIA)主办、CCI数据安全工作委员会中国电子技术标准化研究院等单位承办的“2023年网络安全优秀创新成果大赛”获奖名单公布。天空卫士数据安全扫描仪(DSS)产品获得创新成果大赛优胜奖。 本…...

数据结构学习 leetcode64最小路径和

动态规划 题目: 建议看这里,有这道题详细的解析。我觉得写的挺好。 这是我在学动态规划的时候,动手做的一道题。 虽然我在学动态规划,但是我之前学了dps,所以我就想先用dps试着做,结果发现不行&#xf…...

导出(导入)Linux虚拟机并修改IP地址

一、导出虚拟机 说明:先关闭虚拟机,然后再进行导出。 步骤1:选择要导出的虚拟机 步骤2:选择文件菜单栏下的导出为OVF文件。 步骤3:将导出的文件保存至硬盘文件夹。 二、导入虚拟机 步骤1:选择文件菜单栏…...

OpenCV4工业缺陷检测的六种方法

👨‍🎓博主简介 🏅云计算领域优质创作者   🏅华为云开发者社区专家博主   🏅阿里云开发者社区专家博主 💊交流社区:运维交流社区 欢迎大家的加入! 🐋 希望大家多多支…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...

MVC 数据库

MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

【HTTP三个基础问题】

面试官您好!HTTP是超文本传输协议,是互联网上客户端和服务器之间传输超文本数据(比如文字、图片、音频、视频等)的核心协议,当前互联网应用最广泛的版本是HTTP1.1,它基于经典的C/S模型,也就是客…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列?2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...

Python Ovito统计金刚石结构数量

大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...

uniapp 字符包含的相关方法

在uniapp中,如果你想检查一个字符串是否包含另一个子字符串,你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的,但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...