堆与二叉树(下)
接着上次的,这里主要介绍的是堆排序,二叉树的遍历,以及之前讲题时答应过的简单二叉树问题求解
堆排序
给一组数据,升序(降序)排列
思路
思考:如果排列升序,我们应该建什么堆?
首先,如果排升序,数列最后一个数是 最大数,我们的思路是通过 向上调整 或者 向下调整,数组存放的第一个数不是最小值(小堆)就是最大值(大堆),此时我们将最后一个数与第一个数交换,使得最大值放在最后,此时再使用向上调整 或者 向下调整,得到第二大的数,重复上述动作,很明显,我们需要的第一个数是最大值,因此我们需要建大堆
反之,排降序,建立小堆
代码
#include<stdio.h> void downAdjust(int* pa, int parent, int n) {int child = parent * 2 + 1;while (child < n){if (child + 1 < n && pa[child] > pa[child + 1]){child++;}if (pa[parent] > pa[child]){swap(&pa[parent], &pa[child]);}else{break;}parent = child;child = parent * 2 + 1;} } int main() {int arr[] = { 1,3,2,5,7,4,7,4,2,5,6,8};int n = sizeof(arr) / sizeof(arr[0]);for (int i = (n - 1 - 1) / 2; i >= 0; i--){downAdjust(arr, i, n);}for (int i = n; i > 0; ){swap(&arr[0], &arr[i - 1]);downAdjust(arr, 0, --i);}for (int i = 0; i < n; i++){printf("%d ", arr[i]);}return 0; }
topK算法
在一组数据中,选出k个最大(最小)的数
思路
如果我们选择k个最大的数,假设数组的前k个数就是最大的数,这 k个数建立 小堆,带一个数与 后面的从第 k + 1个数开始,进行比较,如果比第一个数的就换下来,然后向下调整,直到每个所有数都比较完了
代码
void downAdjust(int* pa, int parent, int n) {int child = parent * 2 + 1;while (child < n){if (child + 1 < n && pa[child] > pa[child + 1]){child++;}if (pa[parent] > pa[child]){swap(&pa[parent], &pa[child]);}else{break;}parent = child;child = parent * 2 + 1;} } #include<stdio.h> int main() {int arr[] = { 1,6,10,3,5,8,46,23,6,25,3,40 };int n = sizeof(arr) / sizeof(arr[0]);int k = 0;scanf("%d", &k);for (int i = (k - 1 - 1) / 2; i >= 0; i--){downAdjust(arr, i, n);}for (int i = k; i < n; i++){if (arr[i] > arr[0]){swap(&arr[i], &arr[0]);downAdjust(arr, 0, k);}}for (int i = 0; i < k; i++){printf("%d ", arr[i]);}return 0; }
五. 二叉树的实现
1. 链接结构搭建二叉树
代码
typedef int TLType; typedef struct TreeList {TLType val;struct TreeList* left;struct TreeList* right; }TL; TL *creatnode(TLType x) {TL*pa = (TL*)malloc(sizeof(TL));if (pa == NULL){perror("malloc");return;}TL* newnode = pa;newnode->left = newnode->right = NULL;newnode->val = x;return newnode; } TL* CreatTree() {TL* tree1 = creatnode(1);TL *tree2 = creatnode(2);TL* tree3 = creatnode(3);TL* tree4 = creatnode(3);tree1->left = tree2;tree1->right = tree3;tree2->left = tree4;return tree1; } #include<stdio.h> int main() {TL* p = NULL;p = CreatTree(); }我们搭建了一个这样的树结构:
2. 二叉树的遍历
二叉树的遍历可以分三种:前序,中序,后序,层序
a. 前序遍历:(根,左子树,右子树)
举例
这棵树的前序遍历是怎样的?(包括空树,用N表示)
val1 val2 val4 N N val5 N N val3 val6 N N val7 N N
代码实现
#include<stdio.h> #include<stdlib.h> typedef int TLType; typedef struct TreeList {TLType val;struct TreeList* left;struct TreeList* right; }TL; TL *creatnode(TLType x) {TL*pa = (TL*)malloc(sizeof(TL));if (pa == NULL){perror("malloc");return;}TL* newnode = pa;newnode->left = newnode->right = NULL;newnode->val = x;return newnode; } TL* CreatTree() {TL* tree1 = creatnode(1);TL *tree2 = creatnode(2);TL* tree3 = creatnode(3);TL* tree4 = creatnode(4);TL* tree5 = creatnode(5);TL* tree6 = creatnode(6);TL* tree7 = creatnode(7);tree1->left = tree2;tree1->right = tree3;tree2->left = tree4;tree2->right = tree5;tree3->left = tree6;tree3->right = tree7;return tree1; } #include<stdio.h> void PrevOrder(TL *root) {if (root == NULL){printf("N ");return;}printf("%d ", root->val);PrevOrder(root->left);PrevOrder(root->right); } int main() {TL* p = NULL;p = CreatTree();PrevOrder(p); }运行结果:
b. 中序遍历:(左子树,根,右子树)
举例
这棵树的中序遍历是怎样的?(包括空树,用N表示)
N val4 N val2 N val5 N val1 N val6 N val3 N val7 N
代码实现
#include<stdio.h> #include<stdlib.h> typedef int TLType; typedef struct TreeList {TLType val;struct TreeList* left;struct TreeList* right; }TL; TL *creatnode(TLType x) {TL*pa = (TL*)malloc(sizeof(TL));if (pa == NULL){perror("malloc");return;}TL* newnode = pa;newnode->left = newnode->right = NULL;newnode->val = x;return newnode; } TL* CreatTree() {TL* tree1 = creatnode(1);TL *tree2 = creatnode(2);TL* tree3 = creatnode(3);TL* tree4 = creatnode(4);TL* tree5 = creatnode(5);TL* tree6 = creatnode(6);TL* tree7 = creatnode(7);tree1->left = tree2;tree1->right = tree3;tree2->left = tree4;tree2->right = tree5;tree3->left = tree6;tree3->right = tree7;return tree1; } #include<stdio.h> void InOder(TL* root) {if (root == NULL){printf("N ");return;}InOder(root->left);printf("%d ", root->val);InOder(root->right); } int main() {TL* p = NULL;p = CreatTree();InOder(p); }运行结果:
c. 后序遍历:(左子树,右子树,根)
举例
这棵树的后序遍历是怎样的?(包括空树,用N表示)
N N val4 N N val5 val2 N N val6 N N val7 val3 val1
代码实现
#include<stdio.h> #include<stdlib.h> typedef int TLType; typedef struct TreeList {TLType val;struct TreeList* left;struct TreeList* right; }TL; TL* creatnode(TLType x) {TL* pa = (TL*)malloc(sizeof(TL));if (pa == NULL){perror("malloc");return;}TL* newnode = pa;newnode->left = newnode->right = NULL;newnode->val = x;return newnode; } TL* CreatTree() {TL* tree1 = creatnode(1);TL* tree2 = creatnode(2);TL* tree3 = creatnode(3);TL* tree4 = creatnode(4);TL* tree5 = creatnode(5);TL* tree6 = creatnode(6);TL* tree7 = creatnode(7);tree1->left = tree2;tree1->right = tree3;tree2->left = tree4;tree2->right = tree5;tree3->left = tree6;tree3->right = tree7;return tree1; } void PostOder(TL* root) {if (root == NULL){printf("N ");return;}PostOder(root->left);PostOder(root->right);printf("%d ", root->val); } int main() {TL* p = NULL;p = CreatTree();PostOder(p); }运行结果:
d. 层序遍历
一排排的遍历
画图举例
实现思路
这里我们借助队列(可以先进先出),开辟的数组里面存放根节点的地址(通过地址可以找到左右子树,否则如果存值是没有办法找到左右子树),打印完根节点的值,就释放,存入左右子树的节点
代码实现
实现的二叉树是这样的:
#include<stdio.h> #include<stdlib.h> #include<assert.h> typedef int TLType; typedef struct TreeList {TLType val;struct TreeList* left;struct TreeList* right; }TL; TL* creatnode(TLType x) {TL* pa = (TL*)malloc(sizeof(TL));if (pa == NULL){perror("malloc");return;}TL* newnode = pa;newnode->left = newnode->right = NULL;newnode->val = x;return newnode; } TL* CreatTree() {TL* tree1 = creatnode(1);TL* tree2 = creatnode(2);TL* tree3 = creatnode(3);TL* tree4 = creatnode(4);TL* tree5 = creatnode(5);TL* tree6 = creatnode(6);TL* tree7 = creatnode(7);tree1->left = tree2;tree1->right = tree3;tree2->left = tree4;tree2->right = tree5;tree3->left = tree6;tree3->right = tree7;return tree1; } typedef struct QueueNode {struct QueueNode* next;TL* data; }QNode;typedef struct Queue {QNode* head;QNode* tail;int size; }Que;void QueueInit(Que* pq) {assert(pq);pq->head = pq->tail = NULL;pq->size = 0; }void QueueDestroy(Que* pq) {assert(pq);QNode* cur = pq->head;while (cur){QNode* next = cur->next;free(cur);cur = next;}pq->head = pq->tail = NULL;pq->size = 0; }void QueuePush(Que* pq, TL* x) {assert(pq);QNode* newnode = (QNode*)malloc(sizeof(QNode));if (newnode == NULL){perror("malloc fail");exit(-1);}newnode->data = x;newnode->next = NULL;if (pq->tail == NULL){pq->head = pq->tail = newnode;}else{pq->tail->next = newnode;pq->tail = newnode;}pq->size++; }bool QueueEmpty(Que* pq) {assert(pq);return pq->head == NULL; } void QueuePop(Que* pq) {assert(pq);assert(!QueueEmpty(pq));if (pq->head->next == NULL){free(pq->head);pq->head = pq->tail = NULL;}else{QNode* next = pq->head->next;free(pq->head);pq->head = next;}pq->size--; }TL* QueueFront(Que* pq) {assert(pq);assert(!QueueEmpty(pq));return pq->head->data; }int QueueSize(Que* pq) {assert(pq);return pq->size; } void leverOrder(TL* root, Que* pq) {QueuePush(pq, root);while (!QueueEmpty(pq)){TL* pa = QueueFront(pq);printf("%d ", pa->val);QueuePop(pq);if (pa->left != NULL){QueuePush(pq, pa->left);}if (pa->right != NULL){QueuePush(pq, pa->right);}}} int main() {TL* p = NULL;p = CreatTree();Que q;QueueInit(&q);leverOrder(p, &q);return 0; }运行结果:
3. 简单二叉树经典问题求解
a. 求二叉树的节点个数
思路
想要求二叉树的节点可以分成 根节点 + 左子树 + 右子树
这里的遍历类似 前序遍历
代码
实现的树是这样的:
#include<stdio.h> #include<stdlib.h> typedef int TLType; typedef struct TreeList {TLType val;struct TreeList* left;struct TreeList* right; }TL; TL* creatnode(TLType x) {TL* pa = (TL*)malloc(sizeof(TL));if (pa == NULL){perror("malloc");return;}TL* newnode = pa;newnode->left = newnode->right = NULL;newnode->val = x;return newnode; } TL* CreatTree() {TL* tree1 = creatnode(1);TL* tree2 = creatnode(2);TL* tree3 = creatnode(3);TL* tree4 = creatnode(4);TL* tree5 = creatnode(5);TL* tree6 = creatnode(6);TL* tree7 = creatnode(7);tree1->left = tree2;tree1->right = tree3;tree2->left = tree4;tree2->right = tree5;tree3->left = tree6;tree3->right = tree7;return tree1; } int TreeSize(TL* root) {if (root == NULL){return 0;}return 1 + TreeSize(root->left) + TreeSize(root->right); } int main() {TL* p = NULL;p = CreatTree();int size = TreeSize(p);printf("%d ", size);return 0; }
b. 求树的高度
思路
求二叉树的高度,我们需要找到到那个最长的路径,这里采用分治的思想,如果为空树,返回 0 (空树高度为 0),调用左子树和右子树都会 + 1(+ 1可以理解成加上节点的高度),对比左子树和右子树,返回高度最大的那个
注:每求一次左右节点个数时,一定要保存,否则会有很大的时间浪费
代码
#include<stdio.h> #include<stdlib.h> typedef int TLType; typedef struct TreeList {TLType val;struct TreeList* left;struct TreeList* right; }TL; TL* creatnode(TLType x) {TL* pa = (TL*)malloc(sizeof(TL));if (pa == NULL){perror("malloc");return;}TL* newnode = pa;newnode->left = newnode->right = NULL;newnode->val = x;return newnode; } TL* CreatTree() {TL* tree1 = creatnode(1);TL* tree2 = creatnode(2);TL* tree3 = creatnode(3);TL* tree4 = creatnode(4);TL* tree5 = creatnode(5);TL* tree6 = creatnode(6);TL* tree7 = creatnode(7);TL* tree8 = creatnode(8);tree1->left = tree2;tree1->right = tree3;tree2->left = tree4;tree2->right = tree5;tree3->left = tree6;tree3->right = tree7;tree4->left = tree8;return tree1; } int TreeHigh(TL* root) {if (root == NULL){return 0;}int Left = 1 + TreeHigh(root->left);int Right = 1 + TreeHigh(root->right) ;return Left > Right ? Left : Right; } int main() {TL* p = NULL;p = CreatTree();int high = TreeHigh(p);printf("%d ", high);return 0; }
c. 求根节点的个数
思路
判断是否是根节点的方法就是判断它的左右子树是否是 空树,我们只需要遍历这棵树就行,但如果遍历时,根节点遇到空树这也是一种结束条件
代码
#include<stdio.h> #include<stdlib.h> typedef int TLType; typedef struct TreeList {TLType val;struct TreeList* left;struct TreeList* right; }TL; TL* creatnode(TLType x) {TL* pa = (TL*)malloc(sizeof(TL));if (pa == NULL){perror("malloc");return;}TL* newnode = pa;newnode->left = newnode->right = NULL;newnode->val = x;return newnode; } TL* CreatTree() {TL* tree1 = creatnode(1);TL* tree2 = creatnode(2);TL* tree3 = creatnode(3);TL* tree4 = creatnode(4);TL* tree5 = creatnode(5);TL* tree6 = creatnode(6);TL* tree7 = creatnode(7);TL* tree8 = creatnode(8);tree1->left = tree2;tree1->right = tree3;tree2->left = tree4;tree2->right = tree5;tree3->left = tree6;tree3->right = tree7;tree4->left = tree8;return tree1; } int RootSize(TL* root) {if (root == NULL){return 0;}if (root->left == NULL && root->right == NULL){return 1;}return RootSize(root->left) + RootSize(root->right); } int main() {TL* p = NULL;p = CreatTree();int root = RootSize(p);printf("%d ", root);return 0; }
d. 求倒数第k排节点的个数
思路
这个可以是求树的高度的变形,将计数倒过来
代码
#include<stdio.h> #include<stdlib.h> typedef int TLType; typedef struct TreeList {TLType val;struct TreeList* left;struct TreeList* right; }TL; TL* creatnode(TLType x) {TL* pa = (TL*)malloc(sizeof(TL));if (pa == NULL){perror("malloc");return;}TL* newnode = pa;newnode->left = newnode->right = NULL;newnode->val = x;return newnode; } TL* CreatTree() {TL* tree1 = creatnode(1);TL* tree2 = creatnode(2);TL* tree3 = creatnode(3);TL* tree4 = creatnode(4);TL* tree5 = creatnode(5);TL* tree6 = creatnode(6);TL* tree7 = creatnode(7);TL* tree8 = creatnode(8);tree1->left = tree2;tree1->right = tree3;tree2->left = tree4;tree2->right = tree5;tree3->left = tree6;tree3->right = tree7;tree4->left = tree8;return tree1; }int TreeHigh(TL* root) {if (root == NULL){return 0;}int Left = 1 + TreeHigh(root->left);int Right = 1 + TreeHigh(root->right) ;return Left > Right ? Left : Right; } int RootKsize(TL* root,int n,int k) {if (root == NULL){return 0;}if (n == k){return 1;}return RootKsize(root->left, n - 1, k) + RootKsize(root->right, n - 1, k); } int main() {int k = 0;scanf("%d", &k);TL* p = NULL;p = CreatTree();int high = TreeHigh(p);int rootk = RootKsize(p, high, k);printf("%d ", rootk);return 0; }
e. 判断是否是相同的树
思路
采用前序,先比较根节点是否相同,再比较左右子树是否相同
代码
#include<stdio.h> #include<stdlib.h> #include<stdbool.h> typedef int TLType; typedef struct TreeList {TLType val;struct TreeList* left;struct TreeList* right; }TL; TL* creatnode(TLType x) {TL* pa = (TL*)malloc(sizeof(TL));if (pa == NULL){perror("malloc");return;}TL* newnode = pa;newnode->left = newnode->right = NULL;newnode->val = x;return newnode; } TL* CreatTree1() {TL* tree1 = creatnode(1);TL* tree2 = creatnode(2);TL* tree3 = creatnode(3);TL* tree4 = creatnode(4);TL* tree5 = creatnode(5);TL* tree6 = creatnode(6);TL* tree7 = creatnode(7);TL* tree8 = creatnode(8);tree1->left = tree2;tree1->right = tree3;tree2->left = tree4;tree2->right = tree5;tree3->left = tree6;tree3->right = tree7;tree4->left = tree8;return tree1; } TL* CreatTree2() {TL* tree1 = creatnode(1);TL* tree2 = creatnode(2);TL* tree3 = creatnode(3);TL* tree4 = creatnode(4);TL* tree5 = creatnode(5);TL* tree6 = creatnode(6);TL* tree7 = creatnode(7);tree1->left = tree2;tree1->right = tree3;tree2->left = tree4;tree2->right = tree5;tree3->left = tree6;tree3->right = tree7;return tree1; } bool IsSameTree(TL* root1,TL* root2) {if (root1 == NULL && root2 == NULL){return true;}if (root1 == NULL || root2 == NULL){return false;}if (root1->val != root2->val){return false;}return IsSameTree(root1->left, root2->left) && IsSameTree(root1->right, root2->right); } int main() {TL* p = NULL;p = CreatTree1();TL* q = CreatTree2();printf("%d ", IsSameTree(p, q));return 0; }
f. 找到某个值,返回节点的地址
思路
前序遍历完数组,如果对比左右子树,判断是否找到节点的地址
代码
#include<stdio.h> #include<stdlib.h> #include<stdbool.h> typedef int TLType; typedef struct TreeList {TLType val;struct TreeList* left;struct TreeList* right; }TL; TL* creatnode(TLType x) {TL* pa = (TL*)malloc(sizeof(TL));if (pa == NULL){perror("malloc");return;}TL* newnode = pa;newnode->left = newnode->right = NULL;newnode->val = x;return newnode; } TL* CreatTree() {TL* tree1 = creatnode(1);TL* tree2 = creatnode(2);TL* tree3 = creatnode(2);TL* tree4 = creatnode(4);TL* tree5 = creatnode(5);TL* tree6 = creatnode(6);TL* tree7 = creatnode(7);TL* tree8 = creatnode(8);tree1->left = tree2;tree1->right = tree3;tree2->left = tree4;tree2->right = tree5;tree3->left = tree6;tree3->right = tree7;tree4->left = tree8;return tree1; } TL* FindRoot(TL* root,int m) {if (root == NULL){return NULL;}if (root->val == m){return root;}TL* Left = FindRoot(root->left, m);TL* Right = FindRoot(root->right, m);if (Left == NULL && Right == NULL){return NULL;}if (Left == NULL && Right != NULL){return Right;}else {return Left;}} int main() {TL* p = NULL;p = CreatTree();int m = 0;scanf("%d", &m);TL *root = FindRoot(p,m);if (root == NULL){printf("找不到\n");}else{printf("%d ", root->val);}return 0; }
相关文章:
堆与二叉树(下)
接着上次的,这里主要介绍的是堆排序,二叉树的遍历,以及之前讲题时答应过的简单二叉树问题求解 堆排序 给一组数据,升序(降序)排列 思路 思考:如果排列升序,我们应该建什么堆&#x…...
讲诉JVM
jvm是Java代码运行的环境,他将java程序翻译成为机器可以可以识别的机器码,可以跨平台运行如linuc或者windos 简单说一下我对jvm运行的理解, 首先我们运行程序的时候,类加载器会将类按需加载到元空间/方法区里面 …...
8、SpringCloud高频面试题-版本1
1、SpringCloud组件有哪些 SpringCloud 是一系列框架的有序集合。它利用 SpringBoot 的开发便利性巧妙地简化了分布式系统基础设施的开发,如服务发现注册、配置中心、消息总线、负载均衡、断路器、数据监控等,都可以用 SpringBoot 的开发风格做到一键启…...
PHP案例代码:PHP如何提供下载功能?
对Web开发人员来说,“下载”功能是一个非常常见的需求。在网站中提供文件下载,通常用于提供用户手册、软件升级、音乐、视频等各种资源文件。本教程将向您介绍如何实现一个PHP下载功能,同时告诉浏览器文件名称、文件大小、文件类型,并统计下载次数。 首先,我们需要了解一些…...
The Cherno C++笔记 03
目录 Part 07 How the C Linker Works 1.链接 2.编译链接过程中出现的错误 2.1 缺少入口函数 注意:如何区分编译错误还是链接错误 注意:入口点可以自己设置 2.2 找不到自定义函数 2.2.1缺少声明 2.2.2自定义函数与引用函数不一致 2.3 在头文件中放入定义 …...
蓝牙物联网与嵌入式开发如何结合?
蓝牙物联网与嵌入式开发可以紧密结合,以实现更高效、更智能的物联网应用。以下是一些结合的方式: 嵌入式开发为蓝牙设备提供硬件基础设施和控制逻辑:嵌入式系统可以利用微处理器和各种外设组成的系统,为蓝牙设备提供硬件基础设施和…...
前端面试——JavaScript面经(持续更新)
一、数据类型 1. JavaScript用哪些数据类型、它们有什么区别? JavaScript共有八种数据类型,分别包括5种基本数据类型和3种非基本数据类型。 基本数据类型:Undefined、Null、Boolean、Number、String。非基本数据类型:Object、S…...
微前端——无界wujie
B站课程视频 课程视频 课程课件笔记: 1.微前端 2.无界 现有的微前端框架:iframe、qiankun、Micro-app(京东)、EMP(百度)、无届 前置 初始化 新建一个文件夹 1.通过npm i typescript -g安装ts 2.然后可…...
连锁便利店管理系统有什么用
连锁便利店管理系统对于连锁便利店的运营和管理非常有用。以下是一些常见的用途: 1. 库存管理:连锁便利店通常需要管理多个门店的库存,管理系统可以帮助实时掌握各个门店的库存情况,包括商品数量、进货记录、库存调拨等。这样可以…...
Vue 的两种实现:VSCode 中配置 vue 模板快捷方式的过程
1、创建配置文件: 其一、打开 VSCode ,CtrlShiftP, 打开搜索框: 其二、输入:user, 并点击进去 Snippets:Configure User Snippets 其三、输入 vue3js 并回车: 其四、打开项目,发现配置文件 vue3js.code-sn…...
electron 切换至esm
前言 好消息,经过不知道多少年的讨论。 electron28.0.0开始(23.08.31),默认支持esm了。 see https://github.com/electron/electron/issues/21457 使用方法 升级至electron^28.0.0简单地在package.json中添加"type":…...
【新版】软考 - 系统架构设计师(总结笔记)
个人总结学习笔记,仅供参考!!!! →点击 笔者主页,欢迎关注哦(互相学习,共同成长) 笔记目录 📢【系统架构设计系列】系统架构设计专业技能 计算机组成与结构操作系统信…...
Spring MVC 方法中添加参数、HttpServletRequest 和 HttpServletResponse 对象
在这个例子中,我们添加了 HttpServletRequest 和 HttpServletResponse 对象作为控制器方法的参数。这样,你就可以在方法内部同时访问请求参数、请求对象和响应对象,从而进行更灵活的 HTTP 请求和响应处理。 RestController public class MyC…...
单片机的RTC获取网络时间
理解网络同步校准RTC的原理需要考虑NTP、SNTP、RTC这三个关键组件的作用和交互。下面详细解释这个过程: 1. NTP(Network Time Protocol): 协议目的:NTP是用于同步计算机和设备时钟的协议。它通过在网络上与时间服务器通…...
Android 13 内置可卸载的搜狗输入法
环境 系统:Android 13 芯片厂商:展锐 需求 默认只有英文输入法,没有中文,需要中文输入法,且可以卸载的。 实测为搜狗输入法,百度等其它输入法也同样适用。 实现 在SDK目录中创建packages/apps/SogouIM…...
持续集成交付CICD:GitLabCI 封装Python类 并结合 ArgoCD 完成前端项目应用发布
目录 一、实验 1. 环境 2. Python代码实现获取文件 3.Python代码实现创建文件 4.Python代码实现更新文件 5.GitLab更新库文件与运行流水线 6.ArgoCD 完成前端项目应用发布 二、问题 1.Python获取GitLab指定仓库文件报错 2. K8S master节点运行Python代码报错 一、实验…...
第十三章 常用类(Math 类、Arrays 类、System类、Biglnteger 和BigDecimal 类、日期类)
一、Math 类(P481) Math 类包含,用于执行基本数学运算的方法,如初等指数、对数、平方根和三角函数。 (1)abs:绝对值 (2)pow:求幂 (3)c…...
2023年12月24日学习总结
今日to do list: 做kaggle上面的流量预测项目☠️ 学习时不刷手机🤡 okkkkkkkkkkkkkk 开始👍🍎 0、我在干什么? 我在预测一个名字叫做elborn基站的下行链路流量,用过去29天的数据预测未来10天的数据 1、…...
第26关 K8s日志收集揭秘:利用Log-pilot收集POD内业务日志文件
------> 课程视频同步分享在今日头条和B站 大家好,我是博哥爱运维。 OK,到目前为止,我们的服务顺利容器化并上了K8s,同时也能通过外部网络进行请求访问,相关的服务数据也能进行持久化存储了,那么接下来…...
芯科科技以卓越的企业发展和杰出的产品创新获得多项殊荣
2023年共获颁全球及囯內近20个行业奖项 Silicon Labs(亦称“芯科科技”)日前在全球半导体联盟(Global Semiconductor Alliance,GSA)举行的颁奖典礼上,再次荣获最受尊敬上市半导体企业奖,这是公…...
遍历 Map 类型集合的方法汇总
1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
Spring数据访问模块设计
前面我们已经完成了IoC和web模块的设计,聪明的码友立马就知道了,该到数据访问模块了,要不就这俩玩个6啊,查库势在必行,至此,它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据(数据库、No…...
九天毕昇深度学习平台 | 如何安装库?
pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子: 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...
安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)
船舶制造装配管理现状:装配工作依赖人工经验,装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书,但在实际执行中,工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...
Selenium常用函数介绍
目录 一,元素定位 1.1 cssSeector 1.2 xpath 二,操作测试对象 三,窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四,弹窗 五,等待 六,导航 七,文件上传 …...
4. TypeScript 类型推断与类型组合
一、类型推断 (一) 什么是类型推断 TypeScript 的类型推断会根据变量、函数返回值、对象和数组的赋值和使用方式,自动确定它们的类型。 这一特性减少了显式类型注解的需要,在保持类型安全的同时简化了代码。通过分析上下文和初始值,TypeSc…...
uniapp 实现腾讯云IM群文件上传下载功能
UniApp 集成腾讯云IM实现群文件上传下载功能全攻略 一、功能背景与技术选型 在团队协作场景中,群文件共享是核心需求之一。本文将介绍如何基于腾讯云IMCOS,在uniapp中实现: 群内文件上传/下载文件元数据管理下载进度追踪跨平台文件预览 二…...













