当前位置: 首页 > news >正文

百川2大模型微调问题解决

    之前用https://github.com/FlagAlpha/Llama2-Chinese微调过几个模型,总体来说llama2的生态还是比较好的,过程很顺利。微调百川2就没那么顺利了,所以简单做个记录

    1. 数据准备,我的数据是单轮对话,之前微调llama2已经按照sft格式做好txt文件,翻看https://github.com/baichuan-inc/Baichuan2发现用的是json,和我所用数据格式有所出入,训练我还是用一开始用llama2的finetune脚本和参数,按照baichuan2的数据格式调整了代码。不过最后为了兼容llama2,我就把llama2的数据格式和tokenize_function给用在了百川2上,看起来也没啥问题。

    2. 模型选取,用baichuan2-13b-chat作为预训练权重,推理的时候总是头部输出我要的内容,但是输出总是无法停止,就算训完一个epoch也是这样,很怪异,研究半天,不知道所以然,干脆放弃,采用不带chat的baichuan2-13b作为预训练权重,这次很快出结果,只要iter 100次保存下来的模型,输出也是我想要的内容,所以就不换了,暂时用baichuan2-13b。主要是llama2已经跑的很好,我实验也就不求甚解,将就先用baichuan2-13b。在这个过程中"--lora_r 1 --lora_alpha 32 --lora_dropout 0.1"这几个参数,我按照baichuan2仓库里设置了。

    3. 给百川模型的加载统统加上trust_remote_code,不然总是提示你y/N选择,孙悟空都会是烦死了。

    4. 训练模型遇到的错误1: 

AttributeError: 'BaichuanTokenizer' object has no attribute 'sp_model'

        这个错误通过简单回滚transfomers解决python3 -m pip install transformers==4.33.2,另外还有一个错误忘了具体是啥,通过回滚bitsandbytes解决python3 -m pip install bitsandbytes==0.41.0,幸运的是llama2在这两个模块版本下,同样工作。上面的错误,其实也有人说挪下tokenization_baichuan.py里的super的位置,我改了几处这个文件,似乎不起作用,随即放弃这个方案。

    5. ​推理过程遇到的错误2,这个错误也是折腾了我好一会,通过给AutoModelForCausalLM.from_pretrained加上pretraining_tp=1参数解决,先跑通,原理没去深究了。

RuntimeError: mat1 and mat2 shapes cannot be multiplied (1x20 and 9x5120)

     6. 训练还遇到一个内存不足的问题3,google了两把,按照提示加了个环境变量PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:1536,果然就好了,谷歌不欺我也。内存不是真不足,而是碎片化严重,调整max_split_size_mb比降低batch size总是好的。

torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 1.20 GiB (GPU 0; 23.69 GiB total capacity; 20.29 GiB already allocated; 579.94 MiB free; 22.56 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

    7. llama2微调的参数module是q_proj,k_proj,v_proj,o_proj,down_proj,gate_proj,up_proj这些,百川2很奇怪,有个自己的W_pack,把全连接打印了一下,其实还有down_proj,o_proj,up_proj,gate_proj,微调这几个部分,效果也差不多,微调哪些更好哪些更差,暂时就不去比较了,遇到问题,也许可以调整一下。 

相关文章:

百川2大模型微调问题解决

之前用https://github.com/FlagAlpha/Llama2-Chinese微调过几个模型,总体来说llama2的生态还是比较好的,过程很顺利。微调百川2就没那么顺利了,所以简单做个记录 1. 数据准备,我的数据是单轮对话,之前微调llama2已经按…...

MySQL的事务-原子性

MySQL的事务处理具有ACID的特性,即原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)和持久性(Durability)。 1. 原子性指的是事务中所有操作都是原子性的,要…...

D3839|完全背包

完全背包&#xff1a; 首先01背包的滚动数组中的解法是内嵌的循环是从大到小遍历&#xff0c;为了保证每个物品仅被添加一次。 for(int i 0; i < weight.size(); i) { // 遍历物品for(int j bagWeight; j > weight[i]; j--) { // 遍历背包容量dp[j] max(dp[j], dp[j…...

Java之Synchronized与锁升级

Synchronized与锁升级 一、概述 在多线程并发编程中 synchronized 一直是元老级角色&#xff0c;很多人都会称呼它为重量级锁。但是&#xff0c;随着 Java SE 1.6 对 synchronized 进行了各种优化之后&#xff0c;有些情况下它就并不那么重了。 本文详细介绍 Java SE 1.6 中为…...

kitex出现:open conf/test/conf.yaml: no such file or directory

open conf/test/conf.yaml: no such file or directory https://github.com/cloudwego/cwgo/issues/120 https://github.com/cloudwego/cwgo/issues/29 在使用Kitex生成的代码中&#xff0c;单元测试时回报错&#xff0c;如标题所示。出现该错的原因是&#xff0c;biz/servic…...

sql server多表查询

查询目标 现在有学生表和学生选课信息表&#xff0c;stu和stuSelect&#xff0c;stu中包含学生用户名、名字&#xff0c;stuSelect表中包含学生用户名&#xff0c;所选课程名 学生表&#xff1a; nameusername李明Li Ming李华Li Hua 学生选课表&#xff1a; usernameCourse…...

如何利用PPT绘图并导出清晰图片

在写论文的过程中&#xff0c;免不了需要绘图&#xff0c;但是visio等软件绘图没有在ppt上绘图比较熟练&#xff0c;尤其流程图结构图. 但是ppt导出的图片也不够清晰&#xff0c;默认分辨率是96dpi&#xff0c;而杂志投稿一般要求至300dpi。解决办法如下&#xff1a; 1.打开注…...

1.倒排索引 2.逻辑斯提回归算法

1.倒排索引 https://help.aliyun.com/zh/open-search/retrieval-engine-edition/introduction-to-inverted-indexes 倒排索引&#xff08;Inverted Index&#xff09;是一种数据结构&#xff0c;用于快速查找包含某个特定词或词语的文档。它主要用于全文搜索引擎等应用&#…...

Kafka消费者组

消费者总体工作流程 Consumer Group&#xff08;CG&#xff09;&#xff1a;消费者组&#xff0c;由多个consumer组成。形成一个消费者组的条件&#xff0c;是所有消费者的groupid相同。 • 消费者组内每个消费者负责消费不同分区的数据&#xff0c;一个分区只能由一个组内消费…...

四. 基于环视Camera的BEV感知算法-BEVDepth

目录 前言0. 简述1. 算法动机&开创性思路2. 主体结构3. 损失函数4. 性能对比总结下载链接参考 前言 自动驾驶之心推出的《国内首个BVE感知全栈系列学习教程》&#xff0c;链接。记录下个人学习笔记&#xff0c;仅供自己参考 本次课程我们来学习下课程第四章——基于环视Cam…...

CentOS系统环境搭建(二十五)——使用docker compose安装mysql

centos系统环境搭建专栏&#x1f517;点击跳转 文章目录 使用docker compose安装mysqlMySQL81.新建文件夹2.创建docker-compose.yaml3.创建my.cnf4.mysql容器的启动和关闭 MySQL5.71.新建文件夹2.创建docker-compose.yaml3.创建my.cnf4.mysql容器的启动和关闭 使用docker comp…...

协作机器人(Collaborative-Robot)安全碰撞的速度与接触力

协作机器人&#xff08;Collaborative-Robot&#xff09;的安全碰撞速度和接触力是一个非常重要的安全指标。在设计和使用协作机器人时&#xff0c;必须确保其与人类或其他物体的碰撞不会对人员造成伤害。 对于协作机器人的安全碰撞速度&#xff0c;一般会设定一个上限值&…...

第11章 GUI Page400~402 步骤二 画直线

运行效果&#xff1a; 源代码&#xff1a; /**************************************************************** Name: wxMyPainterApp.h* Purpose: Defines Application Class* Author: yanzhenxi (3065598272qq.com)* Created: 2023-12-21* Copyright: yanzhen…...

华为gre隧道全部跑静态路由

最终实现&#xff1a; 1、pc1能用nat上网ping能pc3 2、pc1能通过gre访问pc2 3、全部用静态路由做&#xff0c;没有用ospf&#xff0c;如果要用ospf&#xff0c;那么两边除了路由器上跑ospf&#xff0c;核心交换机也得用ospf r2配置&#xff1a; acl number 3000 rule 5 deny…...

【c++】入门1

c关键字 命名空间 在C/C中&#xff0c;变量、函数和后面要学到的类都是大量存在的&#xff0c;这些变量、函数和类的名称将都存在于全局作用域中&#xff0c;可能会导致很多冲突。使用命名空间的目的是对标识符的名称进行本地化&#xff0c;以避免命名冲突或名字污染&#xff…...

Python之Django项目的功能配置

1.创建Django项目 进入项目管理目录&#xff0c;比如&#xff1a;D盘 执行命令&#xff1a;diango-admin startproject demo1 创建项目 如果提示diango命令不存在&#xff0c;搜索diango-admin程序的位置&#xff0c;然后加入到环境变量path中。 进入项目&#xff0c;cd demo…...

P4 音频知识点——PCM音频原始数据

目录 前言 01 PCM音频原始数据 1.1 频率 1.2 振幅&#xff1a; 1.3 比特率 1.4 采样 1.5 量化 1.6 编码 02. PCM数据有以下重要的参数&#xff1a; 采样率&#xff1a; 采集深度 通道数 ​​​​​​​ PCM比特率 ​​​​​​​ PCM文件大小计算&#xff1a; ​…...

解决Electron中WebView加载部分HTTPS页面白屏的方法

Electron是一个开源的桌面应用程序框架&#xff0c;它允许使用Web技术构建跨平台的桌面应用。在Electron应用中&#xff0c;WebView 是一个常用的组件&#xff0c;用于嵌套加载Web内容。然而&#xff0c;有时候在加载使用 HTTPS 协议的页面时&#xff0c;可能会因为证书问题导致…...

【Java中创建对象的方式有哪些?】

✅Java中创建对象的方式有哪些&#xff1f; ✅使用New关键字✅使用反射机制✅使用clone方法✅使用反序列化✅使用方法句柄✅ 使用Unsafe分配内存 ✅使用New关键字 这是我们最常见的也是最简单的创建对象的方式&#xff0c;通过这种方式我们还可以调用任意的构造函数 (无参的和有…...

npm使用详解(好吧好吧是粗解)

目录 npm是什么&#xff1f; npm有什么用&#xff1f; npm安装 在 Windows 上 在 macOS 上 在 Linux 上&#xff08;使用 apt 包管理器为例&#xff09; 验证 npm 安装成功&#xff1a; npm使用 1. 初始化项目&#xff1a; 2. 安装和管理依赖&#xff1a; 3. 查看和…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例&#xff1a;使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例&#xff1a;使用OpenAI GPT-3进…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

ip子接口配置及删除

配置永久生效的子接口&#xff0c;2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...

C#学习第29天:表达式树(Expression Trees)

目录 什么是表达式树&#xff1f; 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持&#xff1a; 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...