当前位置: 首页 > news >正文

28相似矩阵和若尔当标准型

一、关于正定矩阵的一些补充

在此之前,先讲一下对称矩阵中那些特征值为正数的矩阵,这样特殊的矩阵称为正定矩阵。其更加学术的定义是:

SSS 是一个正定矩阵,如果对于每一个非零向量xxxxTSx>0x^TSx>0xTSx>0

  • 正定矩阵的逆仍然是正定矩阵
  • 两个正定矩阵的和仍然是正定矩阵
  • S=AATS=AA^TS=AAT 是正定的条件是矩阵 AAA 的列是独立的

对于最后一个结论。矩阵 AAA 是一个 m×nm\times nm×n 普通的矩阵(有可能为长方形),那么对应的矩阵 ATAA^TAATA 一定是对称矩阵。那么这样的 ATAA^TAATA 是一个正定的吗?

AATAA^T AAT
左乘xTx^TxT,右乘 xxx
xTATAx=(Ax)T(Ax)=∣Ax∣2≥0x^TA^TAx=(Ax)^T(Ax)=|Ax|^2\ge0 xTATAx=(Ax)T(Ax)=Ax20
要保证它一定是正定,Ax=0(x≠0)Ax = 0(x\ne\bold0)Ax=0(x=0) 需要剔除, 这是我们熟悉的,只要 AAA 列满秩就一定只有零解,该条件自然剔除。所以结论是:只要普通方阵列满秩,AATAA^TAAT就一定是一个正定的对称矩阵

二、相似矩阵

对于m×n矩阵:m\times n矩阵:m×n矩阵:AAABBB 是相似的,那么存在一些矩阵使得:
B=M−1AMB=M^{-1}AM B=M1AM
事实上,我们已经接触过一种比较特殊的相似矩阵。假设 AAA 具有线性无关的特征向量,也就是存在特征矩阵 SSS使得:
S−1AS=ΛS^{-1}AS=\Lambda S1AS=Λ
用这节课的新概念来看, 矩阵 AAA 与对角矩阵 Λ\LambdaΛ 相似,与对角矩阵相似是一个特别简洁的情况。举个例子:
A=[2112]A=\begin{bmatrix}2&1\\1&2\end{bmatrix} A=[2112]
因为矩阵 AAA 是线性无关的,所以必然存在一个逆矩阵 SSS 使得:
S−1AS=Λ=[3001]S^{-1}AS=\Lambda=\begin{bmatrix}3&0\\0&1\end{bmatrix} S1AS=Λ=[3001]
除了 SSS 很多其他可逆矩阵也可以使得:
M−1AM=BM^{-1}AM=B M1AM=B
不过矩阵没有这么特殊罢了。比如:
[1−401][2112][1410]=[−2−1516]=B\begin{bmatrix}1&-4\\0&1\end{bmatrix}\begin{bmatrix}2&1\\1&2\end{bmatrix}\begin{bmatrix}1&4\\1&0\end{bmatrix}=\begin{bmatrix}-2&-15\\1&6\end{bmatrix}=B [1041][2112][1140]=[21156]=B
那么这两个矩阵 BBBΛ\LambdaΛ 的共同点是什么呢?它们的特征值相同!相似矩阵具有相同的特征值!\color{red}相似矩阵具有相同的特征值!相似矩阵具有相同的特征值!下面对这个结论进行证明:
Ax=λxAx=\lambda x\\\ Ax=λx 
AAAxxx之间插入一个 M−1MM^{-1}MM1M有:
AMM−1x=λxAMM^{-1}x=\lambda x AMM1x=λx
然后左右两边再乘以 M−1M^{-1}M1有:
M−1AMM−1x=λM−1xM^{-1}AMM^{-1}x=\lambda M^{-1} x M1AMM1x=λM1x
加上括号有:
(M−1AM)M−1x=λM−1x(M^{-1}AM)M^{-1}x=\lambda M^{-1} x (M1AM)M1x=λM1x
因为:B=M−1AMB=M^{-1}AMB=M1AM,所以:
BM−1x=λM−1xBM^{-1}x=\lambda M^{-1}x BM1x=λM1x
M−1xM^{-1}xM1x 看成一个向量,显然 λ\lambdaλ 是矩阵 BBB 的特征向量,故相似矩阵相同的特征值,但是特征向量却发生了改变,变成了M−1xM^{-1}xM1x

接下来看一下特征值相同的矩阵,前面知识已知:如果特征值相同那么这个矩阵不可以进行对角化,这种情况是“不咋美丽”的情况,但是我们需要对其进行讨论:

假设我们的特征值 λ1=λ2=4\lambda_1=\lambda_2=4λ1=λ2=4,特征值相同的矩阵可以分为两个阵营:

小阵营1:
[4004]\begin{bmatrix}4&0\\0&4\end{bmatrix} [4004]
这个阵营的矩阵只与自己相似。

大阵营2:
[4104]\begin{bmatrix}4&1\\0&4\end{bmatrix} [4014]
它是不能对角化的,因为如果可以对角化,那么就会相似于小阵营。上面的大阵营例子是一个若尔当标准型 (Jordan Form)。事实上,历史的某个时期,若尔当标准型还是压轴内容,现在不是了,最重要的一个原因就是一般的矩阵很难化简为若尔当标准型:条件特征值完全相等。还可以继续列举这样的矩阵:
[51−13][40174]\begin{bmatrix}5&1\\-1&3\end{bmatrix}\quad\begin{bmatrix}4&0\\17&4\end{bmatrix} [5113][41704]

再列举一个大一些的矩阵:
[0100001000000000]\begin{bmatrix}0&1&0&0\\0&0&1&0\\0&0&0&0\\0&0&0&0\end{bmatrix} 0000100001000000
特征值全是零 λ1=λ2=λ3=λ4=0\lambda_1=\lambda_2=\lambda_3=\lambda_4=0λ1=λ2=λ3=λ4=0,特征向量有几个?等于秩的个数 N(A)=2N(A)=2N(A)=2,有两个特征向量“消失了”。

[0100000000010000]\begin{bmatrix}0&1&0&0\\0&0&0&0\\0&0&0&1\\0&0&0&0\end{bmatrix} 0000100000000010
下面介绍一下若尔当块(Jordan block):
Ji=[λi100λi100λi1⋯⋯⋯⋯]J_i=\begin{bmatrix} \lambda_i&1&&&0\\ 0&\lambda_i&1&&\\ 0&0&\lambda_i&1&\\ \cdots&\cdots&\cdots&\cdots \end{bmatrix} Ji=λi001λi01λi10
对角线上都是相同的特征值 λi\lambda_iλi 特征值右侧都是1,其他地方都是0。每个块都有一个特征向量,我们可以通过数若尔当块确定特征向量的个数。

若尔当定理(Jordan’s theorem):每个方阵 AAA 都相似于一个若尔当阵矩阵 JJJ
J=[J1J2J3⋯]J=\begin{bmatrix}J1&&&&\\&J2\\&&J3\\&&&\cdots\end{bmatrix} J=J1J2J3
若尔当块个数等于特征向量个数。“如果一个矩阵可以对角化,那么这个矩阵相似于对角矩阵”,它是若尔当矩阵的一种特殊情况。最好情况就是对角矩阵。

相关文章:

28相似矩阵和若尔当标准型

一、关于正定矩阵的一些补充 在此之前,先讲一下对称矩阵中那些特征值为正数的矩阵,这样特殊的矩阵称为正定矩阵。其更加学术的定义是: SSS 是一个正定矩阵,如果对于每一个非零向量xxx,xTSx>0x^TSx>0xTSx>0 正…...

springboot操作MongoDB

启动类及配置import com.mongodb.client.MongoClient;import com.mongodb.client.MongoClients;import com.mongodb.client.internal.MongoClientImpl;import org.springframework.boot.SpringApplication;import org.springframework.boot.autoconfigure.SpringBootApplicatio…...

1月奶粉电商销售数据榜单:销售额约20亿,高端化趋势明显

鲸参谋电商数据监测的2023年1月份京东平台“奶粉”品类销售数据榜单出炉! 根据鲸参谋数据显示,1月份京东平台上奶粉的销量约675万件,销售额约20亿元,环比均下降19%左右。与去年相比,整体也下滑了近34%。可以看出&#…...

跨境数据传输是日常业务中经常且至关重要的组成部分

跨境数据传输是日常业务中经常且至关重要的组成部分。在过去的20年中,由于全球通信网络和业务流程的发展,全球数据流的模式已迅速发展。随着数据从数据中心移到数据中心和/或跨边界移动,安全漏洞已成为切实的风险。有可能违反国家和国际数据传…...

错误: tensorflow.python.framework.errors_impl.OutOfRangeError的解决方案

近日,在使用CascadeRCNN完成目标检测任务时,我在使用这个模型训练自己的数据集时出现了如下错误: tensorflow.python.framework.errors_impl.OutOfRangeError: PaddingFIFOQueue _1_get_batch/batch/padding_fifo_queue is closed and has in…...

springboot项目初始化执行sql

Sprint Boot应用可以在启动的时候自动执行项目根路径下的SQL脚本文件。我们需要先将sql脚本写好,并将这些静态资源都放置在src/main/resources文件夹下。 再配置application.yml: spring.datasource.initialization-mode 必须配置初始化模式initializa…...

Kubernetes之存储管理(中)

NFS网络存储 emptyDir和hostPath存储,都仅仅是把数据存储在pod所在的节点上,并没有同步到其他节点,如果pod出现问题,通过deployment会产生一个新的pod,如果新的pod不在之前的节点,则会出现问题&#xff0c…...

MySQL workbench的基本操作

1. 创建新的连接 hostname主机名输入“local host”和“127.0.0.1”效果是一样的,指的是本地的服务器。 需要注意的是,此处的密码在安装软件的时候已经设定。 点击【Test Connection】,测试连接是否成功。 创建完的连接可以通过&#xff0c…...

【Flink】FlinkSQL中Table和DataStream互转

在我们实际使用Flink的时候会面临很多复杂的需求,很可能需要FlinkSQL和DataStream互相转换的情况,这就需要我们熟练掌握Table和DataStream互转,本篇博客给出详细代码以及执行结果,可直接使用,通过例子可学会Table和DataStream互转,具体步骤如下: maven如下<?xml ver…...

网络总结知识点(网络工程师必备)一

♥️作者:小刘在C站 ♥️个人主页:小刘主页 ♥️每天分享云计算网络运维课堂笔记,努力不一定有收获,但一定会有收获加油!一起努力,共赴美好人生! ♥️夕阳下,是最美的绽放,树高千尺,落叶归根人生不易,人间真情 目录 1.TCP UDP协议的区别 2.ARP是第几层协议,其作用...

离线安装samba与配置(.tar方式安装)

一、samba离线安装【安装并设置成功后&#xff0c;相关文件及其位置&#xff1a;①smbd&#xff1a;/usr/local/samba/sbin/smbd②nmdb&#xff1a;/usr/local/samba/sbin/nmbd③配置文件 smb.conf&#xff1a;/usr/local/samba/lib/smb.conf④添加用户的 smbpasswd 文件&#…...

[Java基础]—JDBC

前言 其实学Mybatis前就该学了&#xff0c;但是寻思目前主流框架都是用mybatis和mybatis-plus就没再去看&#xff0c;结果在代码审计中遇到了很多cms是使用jdbc的因此还是再学一下吧。 第一个JDBC程序 sql文件 INSERT INTO users(id, NAME, PASSWORD, email, birthday) VAL…...

基本面向对象编程-计算机基本功能实现_

《C/S项目实训》实验报告 实验名称&#xff1a; 基本面向对象编程-计算机基本功能实现_ 一、实验目的 通过综合实践项目&#xff0c;理解Java 程序设计是如何体现面向对象编程基本思想&#xff0c;掌握OOP方法&#xff0c;掌握事件触发、消息响应机制。进一步巩固面向对…...

C++面向对象之多态性

文章目录C面向对象之多态性1.静态多态2.动态多态3.多态的好处3.1使用方法4.纯虚函数5.虚析构与纯虚析构5.1问题5.2解决6.其他知识点7.代码8.测试结果8.1父类中无虚函数&#xff0c;父类的指针指向子类对象&#xff0c;将调用父类中的函数&#xff0c;无法调用子类中的重写函数&…...

Android性能优化系列篇:弱网优化

弱网优化1、Serializable原理通常我们使用Java的序列化与反序列化时&#xff0c;只需要将类实现Serializable接口即可&#xff0c;剩下的事情就交给了jdk。今天我们就来探究一下&#xff0c;Java序列化是怎么实现的&#xff0c;然后探讨一下几个常见的集合类&#xff0c;他们是…...

Mysql 插入大批量数据调优方法

Mysql 插入大批量数据调优方法[toc]1、多线程插入&#xff08;单表&#xff09;在数据里做插入操作的时候&#xff0c;整体时间的分配是这样的&#xff1a;链接耗时 &#xff08;30%&#xff09;发送query到服务器 &#xff08;20%&#xff09;解析query &#xff08;20%&#…...

matlab基础

系列文章目录 文章目录系列文章目录前言1 基本用法总结基础语法桌面管理矩阵均匀间隔矢量矩阵创建矩阵索引前言 介绍了matlab的基本用法 1 基本用法 >> save filename.mat % 将当前工作区的所有变量保存为mat文件 >> load filename.mat % 加载文件>> loa…...

自动化测试——多窗口切换和切换frame

这里写目录标题一、多窗口切换1、base.py&#xff1a;公共代码2、切换句柄的方式1&#xff0c;通过for循环3、切换句柄的方式2&#xff0c;通过索引切换4、源代码二、frame窗口1、什么是frame?2、Frame 分类3、判断要定位的元素在不在frame中两种方式方式一&#xff1a;鼠标选…...

C#中,Elasticsearch.Net判断空字符串

之前有个业务需求&#xff0c;由于最开始存储到es里的&#xff0c;是默认空字符串。 后面程序取数据时&#xff0c;发现需要取空字符串的数据时&#xff0c;不好取出来。 字符串的字段如图&#xff1a; 实际数据如图&#xff1a; 我用的是C#语言&#xff0c;使用的是Elastic…...

23种设计模式-适配器模式

适配器模式&#xff08;Adapter Pattern&#xff09;是一种常用的设计模式&#xff0c;它可以将不兼容的接口转换成可兼容的接口&#xff0c;使得原本不能一起工作的类可以协同工作。 在Java中&#xff0c;适配器模式一般有两种实现方式&#xff0c;即类适配器模式和对象适配器…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

CSS设置元素的宽度根据其内容自动调整

width: fit-content 是 CSS 中的一个属性值&#xff0c;用于设置元素的宽度根据其内容自动调整&#xff0c;确保宽度刚好容纳内容而不会超出。 效果对比 默认情况&#xff08;width: auto&#xff09;&#xff1a; 块级元素&#xff08;如 <div>&#xff09;会占满父容器…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

【Linux系统】Linux环境变量:系统配置的隐形指挥官

。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量&#xff1a;setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...