力洋网站建设公司/国外直播平台tiktok
📋 博主简介
- 💖 作者简介:大家好,我是wux_labs。😜
热衷于各种主流技术,热爱数据科学、机器学习、云计算、人工智能。
通过了TiDB数据库专员(PCTA)、TiDB数据库专家(PCTP)、TiDB数据库认证SQL开发专家(PCSD)认证。
通过了微软Azure开发人员、Azure数据工程师、Azure解决方案架构师专家认证。
对大数据技术栈Hadoop、Hive、Spark、Kafka等有深入研究,对Databricks的使用有丰富的经验。- 📝 个人主页:wux_labs,如果您对我还算满意,请关注一下吧~🔥
- 📝 个人社区:数据科学社区,如果您是数据科学爱好者,一起来交流吧~🔥
- 🎉 请支持我:欢迎大家 点赞👍+收藏⭐️+吐槽📝,您的支持是我持续创作的动力~🔥
《PySpark大数据分析实战》-19.NumPy介绍ndarray介绍
- 《PySpark大数据分析实战》-19.NumPy介绍ndarray介绍
- 前言
- 数学计算库NumPy介绍
- 多维数组对象ndarray
- 数组的访问
- 结束语
《PySpark大数据分析实战》-19.NumPy介绍ndarray介绍
前言
大家好!今天为大家分享的是《PySpark大数据分析实战》第3章第2节的内容:NumPy介绍ndarray介绍。
图书在:当当、京东、机械工业出版社以及各大书店有售!
数学计算库NumPy介绍
NumPy(Numerical Python)是Python中科学计算的基础包,是用于科学计算和数值分析的一个重要库。它提供了多维数组对象(ndarray),各种派生对象,以及用于数组快速操作的通用函数、线性代数、傅里叶变换、随机数生成等功能,是Python科学计算中必不可少的库。要在项目中使用NumPy,需要在Python环境中安装NumPy,命令如下:
$ pip install numpy
在使用时需要在Python脚本中导入numpy,以及其他必要的包,代码如下:
import numpy as np
import random
import time
多维数组对象ndarray
NumPy包的核心是ndarray对象,它封装了Python原生的相同数据类型的N维数组。ndarray是NumPy中用于存储和处理数据的核心数据结构,支持向量化计算和广播等操作。为了保证其性能优良,其中有许多操作都是代码在本地进行编译后执行的。
创建一个ndarray对象就和创建Python本地list对象一样简单,在NumPy中创建一维数组可以使用numpy.array()函数,这个函数可以接受一个集合对象,如列表或元组,将其转换为一维数组。下面的案例中创建了一个一维数组,代码如下:
ary1 = np.array([1,2,3,4,5,6,7,8,9])
NumPy专门针对ndarray的操作和运算进行了设计,数组的存储效率和输入输出性能远优于Python中的集合,数组越大,NumPy的优势就越明显。下面的案例中,创建了一个包含1亿个随机数的集合,分别用本地集合对象和ndarray对象对元素求和,比较两种方式的耗时,代码如下:
lst1 = []
for i in range(100000000):lst1.append(random.random())# 使用Python原生list进行运算
t1 = time.time()
sum1 = sum(lst1)
t2 = time.time()# 使用ndarray进行运算
ary2 = np.array(lst1)
t3 = time.time()
sum2 = np.sum(ary2)
t4 = time.time()# 考察两种方式的处理时间
print(t2 - t1, '---', t4 - t3)
执行代码,输出结果如下:
0.9900028705596924 --- 0.13501548767089844
可以看到,ndarray的计算速度快很多。相对于Python中的集合,ndarray有一些优势:
- ndarray存储的是相同类型的数据,在内存中是连续存储的。
- ndarray支持并行化运算。
- NumPy底层使用C语言编写,内部解除了GIL(全局解释器锁),其对数组的操作速度不受Python解释器的限制,效率远高于Python代码。
在NumPy中创建一个N维数组也是使用numpy.array()函数,在下面的案例中创建了一个二维数组,代码如下:
ary3 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
数组的访问
ndarray对象的元素可以通过索引、切片、迭代等方式进行访问和修改,这和Python本地集合的访问方式类似。在下面的案例中,分别通过索引、切片等方式访问元素,代码如下:
print("通过索引获取元素:", ary1[2])
print("通过切片获取元素:", ary1[2:7])
print("对元素进行迭代:", [x * 2 for x in ary1])
执行代码,输出结果如下:
通过索引获取元素: 3
通过切片获取元素: [3 4 5 6 7]
对元素进行迭代: [2, 4, 6, 8, 10, 12, 14, 16, 18]
结束语
好了,感谢大家的关注,今天就分享到这里了,更多详细内容,请阅读原书或持续关注专栏。
相关文章:

《PySpark大数据分析实战》-19.NumPy介绍ndarray介绍
📋 博主简介 💖 作者简介:大家好,我是wux_labs。😜 热衷于各种主流技术,热爱数据科学、机器学习、云计算、人工智能。 通过了TiDB数据库专员(PCTA)、TiDB数据库专家(PCTP…...

图解LRU缓存
图解LRU缓存 OJ链接 介绍 LRU 缓存机制可以通过哈希表辅以双向链表实现,我们用一个哈希表和一个双向链表维护所有在缓存中的键值对。 双向链表按照被使用的顺序存储了这些键值对,靠近尾部的键值对是最近使用的,而靠近头部的键值对是最久未…...

FFmpeg常见命令行
1、ffmpeg命令行 视频生成图片 ffmpeg -i test.mp4 -r 25 -f image2 data/image%3d.jpg这个命令行使用FFmpeg工具将视频文件(test.mp4)转换为一系列图像文件。 让我们逐个解释每个参数的含义: -i test.mp4: 指定输入文件为test.mp4。-i是F…...

智能优化算法应用:基于斑马算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于斑马算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于斑马算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.斑马算法4.实验参数设定5.算法结果6.参考文献7.MA…...

《C++避坑神器·二十五》简单搞懂json文件的读写之遍历json文件读写
json.hpp库放在文章末尾 1、遍历json文件读写 (1)插入新键值对到json之情形1 原来json文件如下所示: {"Connection": {"IpAddress": "192.168.20.1","Rock": 0,"Solt": 1}, "Data…...

使用 fixture 机制重构 appium_helloworld
一、前置说明 在 pytest 基础讲解 章节,介绍了 pytest 的特性和基本用法,现在我们可以使用 pytest 的一些机制,来重构 appium_helloworld 。 appium_helloworld 链接: 编写第一个APP自动化脚本 appium_helloworld ,将脚本跑起来 代码目录结构: pytest.ini 设置: [pyt…...

基于python的excel检查和读写软件
软件版本:python3.6 窗口和界面gui代码: class mygui:def _init_(self):passdef run(self):root Tkinter.Tk()root.title(ExcelRun)max_w, max_h root.maxsize()root.geometry(f500x500{int((max_w - 500) / 2)}{int((max_h - 300) / 2)}) # 居中显示…...

Podman配置mongodb
文章目录 查询镜像拉取镜像查看镜像运行容器创建root用户 查询镜像 podman search mongo拉取镜像 podman pull docker.io/library/mongo查看镜像 podman images运行容器 podman run -d -p 27017:27017 --namemongodb-test docker.io/library/mongo创建root用户 podman exe…...

java实现矩阵谱峰搜索算法
矩阵谱峰搜索算法,也称为矩阵谱峰查找算法,是一种用于搜索二维矩阵中谱峰的方法。谱峰是指在矩阵中的一个元素,它比其上下左右四个相邻元素都大或相等。 该算法的基本思想是从矩阵的中间列开始,找到该列中的最大元素,…...

Jenkins的特殊操作定时自动执行任务以及测试报告调优
java -Dhudson.model.DirectoryBrowserSupport.CSP -jar Jenkins.war 测试报告 不美丽 执行上面的代码 重启jenkins 就好了...

【Grafana】Grafana匿名访问以及与LDAP连接
上一篇文章利用Docker快速部署了Grafana用来展示Zabbix得监控数据,但还需要给用户去创建账号允许他们登录后才能看展示得数据,那有什么办法让非管理员更方便得去访问Grafana呢?下面介绍两个比较方便实现的: 在开始设置前ÿ…...

elasticsearch-py 8.x的一些优势
早在 2022 年 2 月,当 Elasticsearch 8.0 发布时,Python 客户端也发布了 8.0 版本。它是对 7.x 客户端的部分重写,并带有许多不错的功能(如下所述),但也带有弃用警告和重大更改。今天,客户端的 7.17 版本仍然相对流行,每月下载量超过 100 万次,占 8.x 下载量的 ~50…...

RK3588平台开发系列讲解(AI 篇)RKNN 数据结构详解
文章目录 一、rknn_sdk_version二、rknn_input_output_num三、rknn_tensor_attr四、rknn_perf_detail五、rknn_perf_run六、rknn_mem_size七、rknn_tensor_mem八、rknn_input九、rknn_output沉淀、分享、成长,让自己和他人都能有所收获!😄 📢本篇章主要讲解 RKNN 相关的数…...

2023版本QT学习记录 -6- UDP通信之UDP接收端
———————UDP接收端——————— 🎄动图演示 🎄发送端通信步骤思维导图 🎄添加组件 QT core gui network🎄添加头文件 #include "qudpsocket.h"🎄创建接收对象 QUdpSocket *recvsocket;&…...

C预处理 | pragma详解
欢迎关注博主 Mindtechnist 或加入【Linux C/C/Python社区】一起学习和分享Linux、C、C、Python、Matlab,机器人运动控制、多机器人协作,智能优化算法,滤波估计、多传感器信息融合,机器学习,人工智能等相关领域的知识和…...

轻松搭建知识付费小程序:让知识传播更便捷
明理信息科技saas知识付费平台 在当今数字化时代,知识付费已经成为一种趋势,越来越多的人愿意为有价值的知识付费。然而,公共知识付费平台虽然内容丰富,但难以满足个人或企业个性化的需求和品牌打造。同时,开发和维护…...

沉浸式go-cache源码阅读!
大家好,我是豆小匠。 这期来阅读go-cache的源码,了解本地缓存的实现方式,同时掌握一些阅读源码的技巧~ 1. 源码获取 git clone https://github.com/patrickmn/go-cache.git用Goland打开可以看到真正实现功能的也就两个go文件,ca…...

伪协议和反序列化 [ZJCTF 2019]NiZhuanSiWei
打开题目 代码审计 第一层绕过 if(isset($text)&&(file_get_contents($text,r)"welcome to the zjctf")){ echo "<br><h1>".file_get_contents($text,r)."</h1></br>"; 要求我们get传参的text内容必须为w…...

性能优化之资源优化
性能优化之资源优化 资源优化性能关键检测流程。浅析一下基于Unity3D 美术规则约束一、模型层面二、贴图层面三、动画层面四、声音层面:(音频通用设置)五、UI层面: 题外点:诚然在优化中,美术占比是很重要的…...

ChatGPT免费 | 8个免费使用GPT-4的方法
这篇文章为寻找免费使用GPT-4技术的读者提供了一份实用的指南。 每个推荐的平台都包括了简要的描述和链接,方便读者直接访问。 以下是根据你提供的内容,稍作整理的文章结构: 1. HuggingFace 描述: 提供GPT-4等多种语言模型的平台。 如何使用:…...

解决Qt“报无法定位程序输入点xxx于动态连接库“问题
今天,在使用QtVS2019编译工程时,弹出"无法定位程序输入点xxx于动态链接库"问题,如图(1)所示: 图(1) 报"无法定位程序输入点xxx于动态链接库"问题 出现这种问题的原因有很多: (1) 工程Release/Deb…...

wpf-MVVM绑定时可能出现的内存泄漏问题
文章速览 引言错误示范示例1示例2 坚持记录实属不易,希望友善多金的码友能够随手点一个赞。 共同创建氛围更加良好的开发者社区! 谢谢~ 引言 正确结构: Model <——> ViewModel <——> View 但很多时候,很容易出现…...

【飞凌 OK113i-C 全志T113-i开发板】一些有用的常用的命令测试
一些有用的常用的命令测试 一、系统信息查询 可以查询板子的内核信息、CPU处理器信息、环境变量等 二、CPU频率 从上面的系统信息查询到,这是一颗具有两个ARMv7结构A7内核的处理器,主频最高1.2GHz 可以通过命令查看当前支持的频率以及目前所使用主频 …...

基于iOS平台的车牌识别表情识别项目
基于iOS平台的车牌识别&&表情识别项目 简介 该项目客户端搭载于iOS平台,服务端搭载于阿里云服务器,主要功能是通过拍照或选取相册图片来进行车牌的识别以及人脸表情识别。本文便是对项目整体流程设计思路和具体实现做一个详细介绍。 整体实…...

Matlab仿真2ASK/OOK、2FSK、2PSK、QPSK、4QAM在加性高斯白噪声信道中的误码率与归一化信噪比的关系
本文为学习所用,严禁转载。 本文参考链接 https://zhuanlan.zhihu.com/p/667382398 QPSK代码及高斯白噪声如何产生 https://ww2.mathworks.cn/help/signal/ref/butter.html 滤波器 https://www.python100.com/html/4LEF79KQK398.html 低通滤波器 本实验使用matlab仿…...

九:爬虫-MongoDB基础
MongoDB介绍 MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。它支持的数据结构非常松散,因此可以存储比较复杂的数据类型。Mongo最大的特点是它支持的查询语言非常强大,其…...

机器学习之实验过程01
import pandas as pd import numpy as np import matplotlib.pyplot as plt data_path /home/py/Work/labs/data/SD.csv # 请确保您的数据文件路径是正确的 df pd.read_csv(data_path) df.head() # 创建散点图 # 创建散点图 plt.figure(figsize(10, 6)) plt.scatter…...

【【迭代16次的CORDIC算法-verilog实现】】
迭代16次的CORDIC算法-verilog实现 -32位迭代16次verilog代码实现 CORDIC.v module cordic32#(parameter DATA_WIDTH 8d32 , // we set data widthparameter PIPELINE 5d16 // Optimize waveform)(input …...

IntelliJ IDEA 2023.3 安装教程
引言 IntelliJ IDEA,通常简称为 IDEA,是由 JetBrains 开发的一款强大的集成开发环境,专为提升开发者的生产力而设计。它支持多种编程语言,包括 Java、Kotlin、Scala 和其他 JVM 语言,同时也为前端开发和移动应用开发提…...

Go 错误处理
Go 错误处理 Go 语言通过内置的错误接口提供了非常简单的错误处理机制。 error类型是一个接口类型,这是它的定义: type error interface {Error() string }我们可以在编码中通过实现 error 接口类型来生成错误信息。 函数通常在最后的返回值中返回错误…...