当前位置: 首页 > news >正文

PyTorch加载数据以及Tensorboard的使用

一、PyTorch加载数据初认识

Dataset:提供一种方式去获取数据及其label

如何获取每一个数据及其label
总共有多少的数据

Dataloader:为后面的网络提供不同的数据形式
数据集

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在编译器中导入Dataset

from torch.utils.data import Dataset

可以在jupyter中查看Dataset官方文档:

help(Dataset)

在这里插入图片描述
或者

Dataset??

在这里插入图片描述

二、Dataset类代码实战

将数据集复制到项目中,命名为dataset,右键拷贝路径。
在这里插入图片描述
在pycharm中的控制台运行:
在这里插入图片描述
(注意:粘贴完拷贝的路径后需要加上""表示转义字符,共有两个斜杠,否则会报错)
输入img.show()会展示出图片
在这里插入图片描述
获取每个图片的地址,创建图片地址列表:
(获得了文件夹的地址后。将文件夹里的数据〔所有照片的路径地址)存入列表里)
在这里插入图片描述
可以换成拼接图片路径:

import os
root_dir = "learn_pytorch/dataset/train"
label_dir = "ants"
path = os.path.join(root_dir, label_dir)

测试第一张图片

path = os.path.join(root_dir, label_dir)
img_path = os.listdir(path)  # 所有图片地址列表
idx = 0
img_name = img_path[idx]  # 第一张图片
img_item_path = os.path.join(root_dir, label_dir, img_name)  # 第一张图片地址

在这里插入图片描述
read_data.py

from torch.utils.data import Dataset
# import cv2
from PIL import Image
import os # 获取所有图片地址
class MyData(Dataset):def __init__(self, root_dir, label_dir):self.root_dir = root_dirself.label_dir = label_dirself.path = os.path.join(self.root_dir, self.label_dir)self.img_path = os.listdir(self.path)def __getitem__(self, idx):img_name = self.img_path[idx]img_item_path = os.path.join(self.root_dir, self.label_dir, img_name)img = Image.open(img_item_path)label = self.label_dirreturn img, labeldef __len__(self):return len(self.img_path)root_dir = "learn_pytorch/dataset/train"
ants_label_dir = "ants"
bees_label_dir = "bees"
ants_dataset = MyData(root_dir, ants_label_dir)
bees_dataset = MyData(root_dir, bees_label_dir)train_dataset = ants_dataset + bees_dataset

将上述代码输入到控制台,然后进行测试:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三、Tensorboard的使用

在编译器中导入

from torch.utils.tensorboard import SummaryWriter

SummaryWriter类使用

在pycharm中查看说明文档方法:可以直接按住ctrl键,点击类名
在这里插入图片描述
创建实例对象:

from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter("logs")
writer.add_image()
writer.add_scalar()
writer.close()

add_scalar()方法的使用

pycharm中ctrl+‘/’可以注释,注释掉writer.add_image()
add_scalar()方法:
在这里插入图片描述
测试:

from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter("logs")
# writer.add_image()
# y=x
for i in range(100):writer.add_scalar("y=x", i, i)
writer.close()

报错。没有安装Tensorboard
在这里插入图片描述

安装Tensorboard

在pycharm的Terminal中运行或在anaconda命令行中激活pytorch环境运行

pip install tensorboard

再次测试:
运行后生成了logs文件夹,里面是执行过的事件文件
在这里插入图片描述

打开事件文件

logdir=事件文件所在文件夹名

在Terminal中运行,点击链接即可:

 tensorboard --logdir=logs

在这里插入图片描述
在这里插入图片描述
上面是默认的端口,还可以指定端口:

 tensorboard --logdir=logs --port=6007

add_image()方法的使用

add_scalar()方法:
在这里插入图片描述
image的类型:
在这里插入图片描述
在pycharm工作台获取图片路径

image_path = "learn_pytorch/dataset/train/ants/0013035.jpg"

测试:

from PIL import Image
img = Image.open(image_path)
print(type(img))

在这里插入图片描述
PIL.JpegImagePlugin.JpegImageFile类型不满足要求。
利用numpy.array(),对PIL图片进行转换。
(另一种方法:利用Opencv读取图片,获得numpy型图片数据)

import numpy as np
img_array = np.array(img)
print(type(img_array))

在这里插入图片描述
从PIL到numpy,需要在add_image()中指定shape中每一个数字/维表示的含义,否则会报错。

from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Imagewriter = SummaryWriter("logs")
image_path = "learn_pytorch/dataset/train/ants/0013035.jpg"
img_PIL = Image.open(image_path)
img_array = np.array(img_PIL)
print(type(img_array))
print(img_array.shape)writer.add_image("test", img_array, 1, dataformats='HWC')
# y=2x
for i in range(100):writer.add_scalar("y=2x", 3*i, i)
writer.close()

运行结果:
在这里插入图片描述
点开tensorboard会显示出图片:
在这里插入图片描述
更改图片地址,换一张图片,并改成第二步:
在这里插入图片描述
运行后tensorboard中的图片变成俩个图片滑动变换。
在这里插入图片描述
更改tag,运行后重新生成了一个单张图片:
在这里插入图片描述
在这里插入图片描述

相关文章:

PyTorch加载数据以及Tensorboard的使用

一、PyTorch加载数据初认识 Dataset:提供一种方式去获取数据及其label 如何获取每一个数据及其label 总共有多少的数据 Dataloader:为后面的网络提供不同的数据形式 数据集 在编译器中导入Dataset from torch.utils.data import Dataset 可以在jupyter中查看Dataset官方文档&…...

TensorFlow是什么

TensorFlow是什么 Tensorflow是一个Google开发的第二代机器学习系统,克服了第一代系统DistBelief仅能开发神经网络算法、难以配置、依赖Google内部硬件等局限性,应用更加广泛,并且提高了灵活性和可移植性,速度和扩展性也有了大幅…...

docker-compose 安装Sonar并集成gitlab

文章目录 1. 前置条件2. 编写docker-compose-sonar.yml文件3. 集成 gitlab4. Sonar Login with GitLab 1. 前置条件 安装docker-compose 安装docker 创建容器运行的特有网络 创建挂载目录 2. 编写docker-compose-sonar.yml文件 version: "3" services:sonar-postgre…...

支付平台在选择服务器租用时要注意什么?

如果要建设一个支付平台的话要进行服务器租用,一旦涉及到钱的方面就必须要顾虑到多方面,这样才能保证安全性,今天小编就给大家讲一讲要注意什么呢? 1、带宽:带宽是业务稳定性的直接因素,只有带宽充足,这样…...

IDEA2018升级2023,lombok插件不兼容导致get/set方法无法使用

1、问题 最近了解到一款叫CodeGeeX 的智能编程助手,想要试用一下,但是IDEA2018版本太低了,没有CodeGeeX插件,于是打算将IDEA升级到2023.2.5版本,具体升级过程略过,升级完成后,启动项目&#xf…...

企业微信服务商代开发模式获取授权企业的客户信息

服务商代开发素材: 服务商可信ip 企业微信认证 测试时不用再次创建一个企业微信,可以用当前的企业微信作为授权企业使用一、创建代开发应用模板 1,代开发模板回调URL配置 参考 注意:保存代开发应用模板时的corpId是服务商的企业…...

库存管理方法有哪些

库存管理是工作中一个离不开的话题,不管是仓管还是业务员都或多或少接触过库存管理方面的工作,例如:进货、销售、库存盘点等等这些都属于库存管理的范筹,那么库存管理方法有哪些?用哪种方法管理库存比较好,…...

数字化车间推动制造业生产创新

一、数字化车间应用场景 1:资源智能化管理 数字化车间通过搭建智能化的设备监测系统,实时采集和监控设备的运行状态和生产数据,对设备进行实时管理和维护,降低故障率和维修成本。同时,通过对生产过程中的数据采集和分…...

Linux的安装及管理程序

一、如何在linux安装卸载软件 1. 编译安装 灵活性较高 难度较大 可以安装较新的版本 2. rpm安装(redhat) linux 包安装 查软件信息:是否安装,文件列表 rpm 软件名 3. yum yum是RPM升级版本,解决rpm的弊端 安装软件 首…...

c语言-表达式求值

目录 前言一、隐式类型转换1.1 整型提升 二、算术转换三、操作符的属性四、问题表达式总结 前言 表达式求值的顺序一部分由操作符的优先级和结合性决定。 有些表达式的操作数在求值的过程中可能需要转换为其他类型 一、隐式类型转换 隐式类型转换是在编译器自动进行的类型转换…...

小型洗衣机哪个牌子质量好?口碑最好的四款小型洗衣机推荐

随着科技的快速发展,现在的人们越来越注重自己的卫生问题,不仅在吃上面会注重卫生问题,在用的上面也会更加严格要求,而衣服做为我们最贴身的东西,我们对它的要求也会更加高,所以最近这几年较火爆的无疑是内…...

springCould中的Ribbon-从小白开始【5】

目录 1.什么是Ribbo❤️❤️❤️ 2.eureka自带Ribbon ❤️❤️❤️ 3. RestTemplate❤️❤️❤️ 4.IRule❤️❤️❤️ 5.负载均衡算法❤️❤️❤️ 1.什么是Ribbo 1.Spring Cloud Ribbon是基于Netflix Ribbon实现的一套客户端,负载均衡的工具。2.主要功能是提供客户端的软件…...

持续集成交付CICD:Jira 发布流水线

目录 一、实验 1.环境 2.GitLab 查看项目 3.Jira 远程触发 Jenkins 实现合并 GitLab 分支 4.K8S master节点操作 5.Jira 发布流水线 一、实验 1.环境 (1)主机 表1 主机 主机架构版本IP备注master1K8S master节点1.20.6192.168.204.180 jenkins…...

JuiceSSH结合内网穿透实现公网远程访问本地Linux虚拟机

文章目录 1. Linux安装cpolar2. 创建公网SSH连接地址3. JuiceSSH公网远程连接4. 固定连接SSH公网地址5. SSH固定地址连接测试 处于内网的虚拟机如何被外网访问呢?如何手机就能访问虚拟机呢? cpolarJuiceSSH 实现手机端远程连接Linux虚拟机(内网穿透,手机端连接Linux虚拟机) …...

使用 pytest.ini 文件控制输出 log 日志

一、前置说明 pytest.ini 文件中可以配置参数来控制 pytest 的运行行为,其存放路径要求与 conftest.py 一样。 项目根目录project_root/ ├── pytest.ini ├── tests/ │ └── test_demo.py以test开头的测试子目录project_root/ ├── tests/ │ ├── pytest.in…...

【Spring】SpringBoot 配置文件

文章目录 什么是配置文件SpringBoot配置文件配置文件快速入手配置文件的格式properties 配置文件说明properties 基本语法读取配置文件信息properties 配置格式缺点 yml 配置文件说明yml 基本语法使用 yml 连接数据库 yml 使用进阶yml 配置不同数据类型配置对象配置集合配置Map…...

Koordinator 支持 K8s 与 YARN 混部,小红书在离线混部实践分享

作者:索增增(小红书)、宋泽辉(小红书)、张佐玮(阿里云) 背景介绍 Koordinator 是一个开源项目,基于阿里巴巴在容器调度领域多年累积的经验孵化诞生,目前已经支持了 K8s…...

网游逆向分析与插件开发-游戏反调试功能的实现-项目需求与需求拆解

上一个专栏结束位置:网游逆向分析与插件开发-代码保护壳的优化-修改随机基址为固定基址-CSDN博客 上一个专栏是做了一个壳有了一定的保护,但是保护还是不够,最大的保护是根上把问题解决了,就是我不允许你对我进行调试&#xff0c…...

阶段七-GitEE

Git:版本控制软件 Git的优点 1.1 协同修改 多人并行不悖的修改服务器端的同一个文件。 1.2 数据备份 不仅保存目录和文件的当前状态,还能够保存每一个提交过的历史状态。 1.3 版本管理 在保存每一个版本的文件信息的时候要做到不保存重复数据&…...

Redis小记(1)

目录 1.Redis和Mysql的区别 2.Redis常用命令 1.Redis和Mysql的区别 a:mysql和redis的存储方式不同 mysql是关系型数据库,用表来进行存储数据。 redis是通过键值对来存储数据,key使用string来标识,value可以是各种不同的数据结构。 b:mys…...

Flutter windows 环境配置

Flutter windows 环境配置 从零开始,演示flutter环境配置到启动项目,同时支持 vscode 和 android studio 目录 Flutter windows 环境配置一、环境配置1. Flutter SDK2. Android Studio3. JDK4. 拓展安装5. Visual Studio 2022二、项目创建和启动1. vsco…...

odoo17核心概念view5——ir_ui_view.py

这是view系列的第5篇文章,介绍一下view对应的后端文件ir_ui_view.py,它是base模块下的一个文件 位置:odoo\addons\base\models\ir_ui_view.py 该文件一共定义了三个模型 1.1 ir.ui.view.custom 查询数据库这个表是空的,从名字看…...

截断整型提升算数转换

文章目录 🚀前言🚀截断🚀整型提升✈️整型提升是怎样的 🚀算术转换 🚀前言 大家好啊!这里阿辉补一下前面操作符遗漏的地方——截断、整型提升和算数转换 看这一篇要先会前面阿辉讲的数据的存储否则可能看不…...

阿里云 ECS Docker、Docker Compose安装

https://help.aliyun.com/document_detail/51853.html https://docs.docker.com/compose/install/ Centos https://blog.csdn.net/Alen_xiaoxin/article/details/104850553 systemctl enable dockerdocker-compose安装 https://blog.csdn.net/qq465084127/article/details/…...

LeetCode——1276. 不浪费原料的汉堡制作方案

通过万岁!!! 题目,给你两个数tomatoSlices和cheeseSlices,然后每制作一个巨无霸汉堡则消耗4个tomatoSlices和1和cheeseSlices,每制作一个小皇堡则需要消耗2个tomatoSlices和1和cheeseSlices。问给你这两个…...

隆道吴树贵:生成式人工智能在招标采购中的应用

12月22日,由中国招标投标协会主办的招标采购数字发展大会在北京召开,北京隆道网络科技有限公司总裁吴树贵受邀出席大会,并在“招标采购数字化交易创新成果”专题会议上发言,探讨生成式人工智能如何在招标采购业务中落地应用。 本次…...

docker搭建kali及安装oneforall

前期docker的安装这里就不用多说了,直接看后面的代码 安装oneforall 1.安装git和pip3 sudo apt update sudo apt install git python3-pip -y2.克隆项目 git clone https://gitee.com/shmilylty/OneForAll.git3.安装相关依赖 cd OneForAll/ sudo apt install pyt…...

【MySQL】数据库之事务

目录 一、什么是事务 二、事务的ACID是什么? 三、有哪些典型的不一致性问题? 第一种:脏读 第二种:不可重复读 第三种:幻读 第四种:丢失更新 四、隔离级别有哪些? (1&#xf…...

AGV|RGV小车RFID传感器CNS-RFID-01/1S的RS232通讯联机方法

CNS-RFID-01/1S广泛应用于AGV小车,搬运机器人,无人叉车等领域,用于定位,驻车等应用,可通过多种通讯方式进行读写操作,支持上位机控制,支持伺服电机,PLC等控制设备联机,本…...

【Python可视化系列】一文教会你绘制美观的热力图(理论+源码)

一、问题 前文相关回顾: 【Python可视化系列】一文彻底教会你绘制美观的折线图(理论源码) 【Python可视化系列】一文教会你绘制美观的柱状图(理论源码) 【Python可视化系列】一文教会你绘制美观的直方图(理…...