重生做明星那个网站下载/电商平台怎么推广
智能优化算法应用:基于金豺算法3D无线传感器网络(WSN)覆盖优化 - 附代码
文章目录
- 智能优化算法应用:基于金豺算法3D无线传感器网络(WSN)覆盖优化 - 附代码
- 1.无线传感网络节点模型
- 2.覆盖数学模型及分析
- 3.金豺算法
- 4.实验参数设定
- 5.算法结果
- 6.参考文献
- 7.MATLAB代码
摘要:本文主要介绍如何用金豺算法进行3D无线传感器网(WSN)覆盖优化。
1.无线传感网络节点模型
本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)≤Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xn−xp)2+(yn−yp)2+(zn−zp)2为点和之间的欧式距离。
2.覆盖数学模型及分析
现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l m∗n∗l个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xi−x)2+(yi−y)2+(zi−z)2(3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)≤r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=m∗n∗l∑Pcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。
3.金豺算法
金豺算法原理请参考:https://blog.csdn.net/u011835903/article/details/125132833
金豺算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1−CoverRatio)=argmin(1−m∗n∗l∑Pcov)(6)
4.实验参数设定
无线传感器覆盖参数设定如下:
%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径
金豺算法参数如下:
%% 设定金豺优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点
5.算法结果
从结果来看,覆盖率在优化过程中不断上升。表明金豺算法对覆盖优化起到了优化的作用。
6.参考文献
[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.
7.MATLAB代码
相关文章:

智能优化算法应用:基于金豺算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于金豺算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于金豺算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.金豺算法4.实验参数设定5.算法结果6.参考文献7.MA…...

Isaac Sim 仿真机器人urdf文件导入
本教程展示如何在 Omniverse Isaac Sim 中导入 urdf 一. 使用内置插件导入urdf 安装urdf 插件 方法是转到“window”->“Extensions” 搜索框中输入urdf, 并启用 通过转至Isaac Utils -> Workflows -> URDF Importer菜单来访问 urdf 扩展。 表格中的 1,2,3 对应着…...

Python 实现Excel和CSV之间的相互转换
通过使用Python编程语言,编写脚本来自动化Excel和CSV之间的转换过程,可以批量处理大量文件,定期更新数据,并集成转换过程到自动化工作流程中。本文将介绍如何使用第三方库Spire.XLS for Python 实现: 使用Python将Exc…...

【GitHub精选项目】短信系统测试工具:SMSBoom 操作指南
前言 本文为大家带来的是 OpenEthan 开发的 SMSBoom 项目 —— 一种用于短信服务测试的工具。这个工具能够发送大量短信,通常用于测试短信服务的稳定性和处理能力。在合法和道德的范畴内,SMSBoom 可以作为一种有效的测试工具,帮助开发者和系统…...

【Filament】立方体贴图(6张图)
1 前言 本文通过一个立方体贴图的例子,讲解三维纹理贴图(子网格贴图)的应用,案例中使用 6 张不同的图片给立方体贴图,图片如下。 读者如果对 Filament 不太熟悉,请回顾以下内容。 Filament环境搭建绘制三角…...

SpringBoot 3.2.0 结合Redisson接入Redis
依赖版本 JDK 17 Spring Boot 3.2.0 Redisson 3.25.0 工程源码:Gitee 集成Redis步骤 导入依赖 <properties><redisson.version>3.25.0</redisson.version> </properties> <dependencies><dependency><groupId>org.pr…...

C++ 比C语言增加的新特性 5 之字符串string
1. c 的string类型 1.1 创建和初始化字符串 string.cpp #include "iostream" #include <string>using namespace std;//创建和初始化字符串 int main() {// 初始化空字符串string emptyString;// 使用字符串字面量初始化字符串string greeting "hello, …...

【第2讲】原理介绍和权限开通
系列文章目录 第1讲:Python环境的下载和安装第2讲:免费开通权限第3讲:1行代码,自动发正文第4讲:1行代码,自动发正文+附件第5讲:自动批量发送第6讲:1行代码,自动下载邮件的附件提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 系列文章目录…...

C++ opencv-3.4.1 提取不规则物体的轮廓
在学习opencv的时候,对一张照片,需要标注照片上物体的不规则轮廓。 如图: 使用opencv进行物体的轮廓处理,关键在于对照片的理解,前期的照片处理的越好最后调用api出来的结果就越接近理想值。 提取照片中物体分如下三步ÿ…...

ServletConfig对象.
是什么 ServletConfig是javax.servlet.包下的一个接口,ServletConfig它是Servlet的一个配置对象; ServletConfig是由tomcat容器创建,通过init方法传入给Servlet; ServletConfig对象如何获取? 在GenericServlet里面定义了&#x…...

jQuery实现框里画面的展开、收起和停止
jQuery实现框里画面的展开、收起和停止 主要用到动画效果中的三个操作: (“id”).slideDown(3000); // 后面的数字表示效果的时长 (“id”).stop(); (“id”).slideUp(3000); 效果图 代码如下: <!DOCTYPE html> <html lang"en…...

less 查看文本时,提示may be a binary file.See it anyway?
解决办法 首先使用echo $LESSCHARSET查看less的编码 看情况设置less的编码格式(我的服务器上使用utf-8查看中文) 还要特别注意一下,Linux中存在的文本文件的编码一定要是utf - 8;(这一步很关键) 例如:要保证windows上传到Linux的…...

H266/VVC帧内预测编码技术概述
预测编码技术 预测编码(Prediction Coding)是指利用已编码的一个或多个样本值,根据某种模型或方法,对当前的样本值进行预测,并对样本真实值和预测值之间的差值进行编码。 视频中的每个像素看成一个信源符号ÿ…...

重组蛋白表达系统的比较-卡梅德生物
一、重组蛋白表达是什么? 重组蛋白表达是通过基因工程手段将目标蛋白基因导入宿主细胞,使其表达出特定的蛋白。该过程包括以下步骤: 1. 构建表达载体:将目标蛋白基因插入表达载体中,通常选择带有启动子、终止子和选择…...

【Java、Python】获取电脑当前网络IP进行位置获取(附源码)
我相信看到这篇博客的时候心里肯定是想解决自己的一个问题的,而这篇博客我就以简单快速的方式解决这些烦恼! 一、获取当前IP 在Java中自带了一些自己的流对象来获取当前的IP地址,不多说我们直接上代码。 //获取当前网络ip地址 ipAddress Ine…...

接口测试学习笔记
文章目录 认识urlhttp协议接口规范Postman实现接口测试设计接口测试用例使用软件发送请求并查看响应结果Postman 自动关联Postman如何提交multipart/form-data请求数据Postman如何提交查询参数Postman 如何批量执行用例单接口测试Postman 断言Postman参数化 接口测试自动化requ…...

一起玩儿物联网人工智能小车(ESP32)——14. 用ESP32的GPIO控制智能小车运动起来(二)
摘要:本文主要讲解如何使用Mixly实现对单一车轮的运动控制。 下面就该用程序控制我们的小车轮子转起来了。打开Mixly软件,然后单击顶部“文件”菜单中的“新建”功能,我们来开启一个新程序的开发工作。 我们的工作同样是先从最简单的开始&am…...

[PyTorch][chapter 8][李宏毅深度学习][DNN 训练技巧]
前言: DNN 是神经网络的里面基础核心模型之一.这里面结合DNN 介绍一下如何解决 深度学习里面过拟合,欠拟合问题 目录: DNN 训练常见问题 过拟合处理 欠拟合处理 keras 项目 一 DNN 训练常见问题 我们在深度学习网络训练的时候经常会遇到下面…...

Nginx快速入门:实现企业安全防护|nginx部署https,ssl证书(七)
0. 引言 之前我们讲到nginx的一大核心作用就是实现企业安全防护,而实现安全防护的原理就是通过部署https证书,以此实现参数加密访问,从而加强企业网站的安全能力。 nginx作为各类服务的统一入口,只需要在入口处部署一个证书&…...

将Go语言开发的Web程序部署到K8S
搭建K8S基础环境 如果已经有K8S环境的同学可以跳过,如果没有,推荐你看看我的《Ubuntu22加Minikue搭建K8S环境》,课程目录如下: Ubuntu22安装Vscode 下载:https://code.visualstudio.com/Download 安装命令&#…...

Python发送数据到Unity实现
Unity设置: 打开Unity项目。创建一个空的GameObject,并附加一个新的脚本TCPReceiver using System.Net; using System.Net.Sockets; using System.Text; using UnityEngine; using System.Threading;public class MyListener : MonoBehaviour {Thread thread;pub…...

Unity 渲染顺序受哪些影响(相机depth、SortingLayer、Render Queue、透明)
目录 相机深度(Camera Depth) Clear Flags 多相机渲染不同部分 SortingLayer 先后顺序 Render Queue Render Queue的作用 Render Queue的分类 GeometryLast(值为2500) 渲染顺序总结 相机深度(Camera Depth&am…...

【论文笔记】Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks
论文地址:Run, Dont Walk: Chasing Higher FLOPS for Faster Neural Networks 代码地址:https://github.com/jierunchen/fasternet 该论文主要提出了PConv,通过优化FLOPS提出了快速推理模型FasterNet。 在设计神经网络结构的时候ÿ…...

python常用函数汇总
python常用函数汇总 对准蓝字按下左键可以跳转哦 类型函数数值相关函数abs() divmod() max() min() pow() round() sum()类型转换函数ascii() bin() hex() oct() bool() bytearray() bytes() chr() complex() float() int() 迭代和循环函数iter() next() e…...

阶段十-物业项目
可能遇到的错误: 解决jdk17javax.xml.bind.DatatypeConverter错误 <!--解决jdk17javax.xml.bind.DatatypeConverter错误--><dependency><groupId>javax.xml.bind</groupId><artifactId>jaxb-api</artifactId><version>…...

使用 Jekyll 构建你的网站 - 初入门
文章目录 一、Jekyll介绍二、Jekyll安装和启动2.1 配置Ruby环境1)Windows2)macOS 2.2 安装 Jekyll2.3 构建Jekyll项目2.4 启动 Jekyll 服务 三、Jekyll常用命令四、目录结构4.1 主要目录4.2 其他的约定目录 五、使用GitLink构建Jekyll博客5.1 生成Jekyll…...

【数据库】postgressql设置数据库执行超时时间
在这篇文章中,我们将深入探讨PostgreSQL数据库中的一个关键设置:SET statement_timeout。这个设置对于管理数据库性能和优化查询执行时间非常重要。让我们一起来了解它的工作原理以及如何有效地使用它。 什么是statement_timeout? statemen…...

SQL语言之DDL
目录结构 SQL语言之DDLDDL操作数据库查询数据库创建数据库删除数据库使用某个数据库案例 DDL操作表创建表查看表结构查询表修改表添加字段删除字段修改字段的类型修改字段名和字段类型 修改表名删除表案例 SQL语言之DDL DDL:数据定义语言,用来定义数…...

hive高级查询(2)
-- 分组查询 SELECT sex,SUM(mark) sum_mark FROM score GROUP BY sex HAVING sum_mark > 555; SELECT sex,sum_mark FROM( SELECT sex,SUM(mark) sum_mark FROM score GROUP BY sex ) t WHERE sum_mark > 555; SELECT AVG(gid),SUM(gid)/COUNT(gid) FROM …...

golang的jwt学习笔记
文章目录 初始化项目加密一步一步编写程序另一个参数--加密方式关于StandardClaims 解密解析出来的怎么用关于`MapClaims`上面使用结构体的全代码实战项目关于验证这个项目的前端初始化项目 自然第一步是暗转jwt-go的依赖啦 #go get github.com/golang-jwt/jwt/v5 go get githu…...