当前位置: 首页 > news >正文

【软件工程】走进瀑布模型:传统软件开发的经典之路

🍎个人博客:个人主页

🏆个人专栏: 软件工程

⛳️  功不唐捐,玉汝于成



目录

前言:

正文

主要阶段:

优点:

缺点:

应用范围:

结语

我的其他博客


前言:

         在软件工程的演进历程中,瀑布模型作为一种传统的开发方法,为许多项目提供了清晰的开发框架。本文将深入探讨瀑布模型的定义、特点以及其在软件开发过程中的应用。通过对瀑布模型各阶段的详细介绍,读者将更好地理解这一经典模型的工作原理,并能够评估其适用范围。同时,我们将讨论瀑布模型的优点和缺点,以及在当今快节奏的软件开发环境中,它所面临的挑战。

正文

瀑布模型(Waterfall Model)是软件工程中的一种传统的开发模型,它以线性、顺序的方式组织和管理软件开发过程。该模型最早由Winston W. Royce于1970年提出,被认为是软件工程中的经典模型之一。瀑布模型的主要特点是将软件开发过程分为一系列有序的阶段,每个阶段在前一个阶段完成后开始,并且一旦进入下一阶段,就不再返回前一阶段。

主要阶段:

  1. 需求分析(Requirements Analysis): 在这个阶段,系统的需求被详细地收集、分析和定义。这阶段的输出是一个详细的需求规格说明书。

  2. 系统设计(System Design): 在这个阶段,根据需求规格说明书,系统的整体结构和模块之间的关系被设计出来。这个阶段产生了系统设计文档。

  3. 实现(Implementation): 开发团队根据系统设计文档开始编写代码,并实现系统的各个模块。

  4. 测试(Testing): 在这个阶段,对系统进行全面的测试,包括单元测试、集成测试和系统测试等,以确保系统的正确性和稳定性。

  5. 部署(Deployment): 将系统部署到目标环境中,让用户开始使用。

  6. 维护(Maintenance): 在系统上线后,对系统进行维护和修复bug,同时根据用户反馈进行改进。

优点:

  1. 简单易懂: 瀑布模型的流程清晰,易于理解和使用。
  2. 适用于小规模项目: 对于小规模、明确定义的项目,瀑布模型可以是一种有效的开发方法。
  3. 阶段间的严格控制: 每个阶段有固定的交付物,使得项目进度容易监控。

缺点:

  1. 刚性和不灵活: 一旦进入下一个阶段,就难以返回前一阶段修改,不适应需求变化频繁的项目。
  2. 风险管理较差: 对于项目中的不确定性和风险反应能力较差。
  3. 用户参与较晚: 用户在项目的后期才能看到具体的成果,容易导致需求理解的偏差。
  4. 长时间交付: 容易导致项目周期较长,用户需要等待较长时间才能使用系统。

应用范围:

瀑布模型适用于一些相对简单、需求稳定的项目,特别是在项目开始前需求能够清晰明确的情况下。传统的软件开发和一些大型系统集成项目可能会采用瀑布模型。然而,在当今快速变化的软件开发环境中,敏捷方法等更加灵活的开发模型也变得越来越流行。

结语

        瀑布模型虽然在过去几十年中为项目管理和软件开发提供了有力的指导,但在当今不断变化的技术和市场需求中,其刚性和不灵活性也变得愈发明显。在选择合适的开发模型时,我们需要权衡瀑布模型的优势与劣势,并考虑到项目的特点和需求。无论是坚持传统还是追求创新,对软件开发方法的深入理解都将为项目的成功提供关键支持。通过对瀑布模型的全面了解,我们可以更好地应对挑战,探索更适应当今需求的灵活开发方法。

我的其他博客

SpringCloud和Dubbo有哪些区别-CSDN博客

【JAVA面试题】static的作用是什么?详细介绍-CSDN博客

【JAVA面试题】final关键字的作用有哪些-CSDN博客

【JAVA面试题】什么是代码单元?什么是码点?-CSDN博客

【JAVA面试题】什么是深拷贝?什么是浅拷贝?-CSDN博客

【Linux笔记】系统信息-CSDN博客

【Linux笔记】网络操作命令详细介绍-CSDN博客

【Linux笔记】文件和目录操作-CSDN博客

【Linux笔记】用户和权限管理基本命令介绍-CSDN博客

Axure RP - 交互设计的强大引擎-CSDN博客

相关文章:

【软件工程】走进瀑布模型:传统软件开发的经典之路

🍎个人博客:个人主页 🏆个人专栏: 软件工程 ⛳️ 功不唐捐,玉汝于成 目录 前言: 正文 主要阶段: 优点: 缺点: 应用范围: 结语 我的其他博客 前言&am…...

两个字符串间的最短路径问题 (100%用例)C卷 (JavaPythonNode.jsC语言C++)

给定两个字符串,分别为字符串A与字符串B。例如A字符串为ABCABBA,B字符串为CBABAC可以得到下图m*n的二维数组,定义原点为(0,0),终点为(m,n),水平与垂直的每一条边距离为1,映射成坐标系如下图 从原点(0,0)到(0,A)为水平边,距离为1,从(0,A)到(A,C)为垂直边,距离为1;假设两…...

通过ADB来实现脚本来控制手机

ADB 简介 adb的全称为Android Debug Bridge,安卓调试桥,可以通过调试命令来控制手机,诸如开机,关机等按键控制;或者启动,关闭应用;异或进行触摸模拟. 通过学习adb,可以实现简单的脚本控制,最大的特点是不需要root,对于普通手机都可以进行,帮助我们完成一些简单的重复性事件,…...

机器学习之K-means聚类

概念 K-means是一种常用的机器学习算法,用于聚类分析。聚类是一种无监督学习方法,它试图将数据集中的样本划分为具有相似特征的组(簇)。K-means算法的目标是将数据集划分为K个簇,其中每个样本属于与其最近的簇中心。 以下是K-means算法的基本步骤: 选择簇的数量(K值)…...

SSH 端口转发:如何将服务绑定到本地 IP 地址

在日常工作中,我们经常需要访问位于远程服务器上的服务,如数据库、Web 应用程序或其他类型的服务器。直接访问这些服务可能会因为安全限制或网络配置而变得复杂或不可能。这时,SSH 端口转发就成了我们的得力助手。在本篇博客中,我…...

回归预测 | MATLAB实ZOA-LSTM基于斑马优化算法优化长短期记忆神经网络的多输入单输出数据回归预测模型 (多指标,多图)

回归预测 | MATLAB实ZOA-LSTM基于斑马优化算法优化长短期记忆神经网络的多输入单输出数据回归预测模型 (多指标,多图) 目录 回归预测 | MATLAB实ZOA-LSTM基于斑马优化算法优化长短期记忆神经网络的多输入单输出数据回归预测模型 (…...

python实现图像的二维傅里叶变换——冈萨雷斯数字图像处理

原理 二维傅里叶变换是一种在图像处理中常用的数学工具,它将图像从空间域(我们通常看到的像素排列)转换到频率域。这种变换揭示了图像的频率成分,有助于进行各种图像分析和处理,如滤波、图像增强、边缘检测等。 在数学…...

We are a team - 华为OD统一考试

OD统一考试 题解&#xff1a; Java / Python / C 题目描述 总共有 n 个人在机房&#xff0c;每个人有一个标号 (1<标号<n) &#xff0c;他们分成了多个团队&#xff0c;需要你根据收到的 m 条消息判定指定的两个人是否在一个团队中&#xff0c;具体的: 消息构成为 a b …...

NFC物联网智慧校园解决方案

近场通信(Near Field Communication&#xff0c;NFC)又称近距离无线通信&#xff0c;是一种短距离的高频无线通信技术&#xff0c;允许电子设备之间进行非接触式点对点数据传输交换数据。这个技术由免接触式射频识别(RFID)发展而来&#xff0c;并兼容 RFID&#xff0c;主要用于…...

鸿蒙系列--组件介绍之容器组件

一、Badge 描述&#xff1a;给其他组件添加标记 子组件&#xff1a;支持单个子组件 1.创建数字标记 Badge(value: {count: number, position?: BadgePosition, maxCount?: number, style: BadgeStyle}) 2.创建字符串标记 Badge(value: {value: string, position?: Badge…...

perl使用find函数踩坑

前言 写了一个脚本可以同时检查多个仿真log文件&#xff0c;并生成html表格。按照文件修改时间从新到旧排序。但是一直无法使用stat函数获取修改时间。 结论&#xff1a;find函数会改变程序执行的当前目录&#xff0c;find(\&process_files, $dir);函数是在$dir目录下运行…...

Java IDEA JUnit 单元测试

JUnit是一个开源的 Java 单元测试框架&#xff0c;它使得组织和运行测试代码变得非常简单&#xff0c;利用JUnit可以轻松地编写和执行单元测试&#xff0c;并且可以清楚地看到哪些测试成功&#xff0c;哪些失败 JUnit 还提供了生成测试报告的功能&#xff0c;报告不仅包含测试…...

深入理解 c++ 函数模板

函数模板是C中的一种强大特性&#xff0c;它允许程序员编写一个可以处理多种数据类型的函数。通过使用模板&#xff0c;我们可以编写一次函数&#xff0c;然后在多种数据类型上使用它&#xff0c;这大大提高了代码的复用性。 1. 基本概念 函数模板是一种参数化类型的工具&…...

系列十二、Linux中安装Zookeeper

一、Linux中安装Zookeeper 1.1、下载安装包 官网&#xff1a;Index of /dist/zookeeper/zookeeper-3.4.11 我分享的链接&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/14Hugqxcgp89f2hqGWDwoBw?pwdyyds 提取码&#xff1a;yyds 1.2、上传至/opt目录 1.3、解…...

k8s之陈述式资源管理

1.kubectl命令 kubectl version 查看k8s的版本 kubectl api-resources 查看所有api的资源对象的名称 kubectl cluster-info 查看k8s的集群信息 kubectl get cs 查看master节点的状态 kubectl get pod 查看默认命名空间内的pod的信息 kubectl get ns 查看当前集群所有的命…...

7天玩转 Golang 标准库之 http/net

在构建web应用时&#xff0c;我们经常需要处理HTTP请求、做网页抓取或者搭建web服务器等任务&#xff0c;而Go语言在这方面为我们提供了强大的内置工具&#xff1a;net/http标准库&#xff0c;它为我们操作和处理HTTP协议提供了便利。 基础用法 一&#xff1a;处理HTTP请求 首…...

钡铼技术集IO数据采集可编程逻辑控制PLC无线4G环保物联网关

背景 数据采集传输对于环保企业进行分析和决策是十分重要的&#xff0c;而实时数据采集更能提升环保生产的执行力度&#xff0c;从而采取到更加及时高效的措施。因此实时数据采集RTU成为环保企业的必备产品之一。 产品介绍 在推进环保行业物联网升级过程中&#xff0c;环保RTU在…...

STM32CubeMX教程10 RTC 实时时钟 - 周期唤醒、闹钟A/B事件和备份寄存器

目录 1、准备材料 2、实验目标 3、实验流程 3.0、前提知识 3.1、CubeMX相关配置 3.1.1 、时钟树配置 3.1.2、外设参数配置 3.1.3 、外设中断配置 3.2、生成代码 3.2.1、外设初始化函数调用流程 3.2.2、外设中断函数调用流程 3.2.3、添加其他必要代码 4、常用函数 …...

HarmonyOS4.0系统性深入开发08服务卡片架构

服务卡片概述 服务卡片&#xff08;以下简称“卡片”&#xff09;是一种界面展示形式&#xff0c;可以将应用的重要信息或操作前置到卡片&#xff0c;以达到服务直达、减少体验层级的目的。卡片常用于嵌入到其他应用&#xff08;当前卡片使用方只支持系统应用&#xff0c;如桌…...

002文章解读与程序——中国电机工程学报EI\CSCD\北大核心《计及源荷不确定性的综合能源生产单元运行调度与容量配置两阶段随机优化》已提供下载资源

&#x1f446;&#x1f446;&#x1f446;&#x1f446;&#x1f446;&#x1f446;&#x1f446;&#x1f446;&#x1f446;&#x1f446;&#x1f446;&#x1f446;&#x1f446;&#x1f446;&#x1f446;&#x1f446;&#x1f446;&#x1f446;下载资源链接&#x1f4…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置&#xff0c;使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解&#xff0c;适合用作学习或写简历项目背景说明。 &#x1f9e0; 一、概念简介&#xff1a;Solidity 合约开发 Solidity 是一种专门为 以太坊&#xff08;Ethereum&#xff09;平台编写智能合约的高级编…...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...

WebRTC从入门到实践 - 零基础教程

WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC&#xff1f; WebRTC&#xff08;Web Real-Time Communication&#xff09;是一个支持网页浏览器进行实时语音…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...

uniapp 集成腾讯云 IM 富媒体消息(地理位置/文件)

UniApp 集成腾讯云 IM 富媒体消息全攻略&#xff08;地理位置/文件&#xff09; 一、功能实现原理 腾讯云 IM 通过 消息扩展机制 支持富媒体类型&#xff0c;核心实现方式&#xff1a; 标准消息类型&#xff1a;直接使用 SDK 内置类型&#xff08;文件、图片等&#xff09;自…...

云原生周刊:k0s 成为 CNCF 沙箱项目

开源项目推荐 HAMi HAMi&#xff08;原名 k8s‑vGPU‑scheduler&#xff09;是一款 CNCF Sandbox 级别的开源 K8s 中间件&#xff0c;通过虚拟化 GPU/NPU 等异构设备并支持内存、计算核心时间片隔离及共享调度&#xff0c;为容器提供统一接口&#xff0c;实现细粒度资源配额…...