对采集到的温湿度数据,使用python进行数据清洗,并使用预测模型进行预测未来一段时间的温湿度数据。
使用Python对传感器采集到的数据进行数据清洗和预测未来一段时间的温湿度数据,您可以按照以下步骤进行操作:
- 导入必要的库
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
- 读取数据
data = pd.read_csv('data.csv') # 替换为您的数据文件路径
- 数据清洗
# 处理缺失值或异常值
data = data.dropna() # 删除包含缺失值的行
data = data[(data['Temperature'] > -50) & (data['Temperature'] < 100)] # 温度异常值范围
data = data[(data['Humidity'] >= 0) & (data['Humidity'] <= 100)] # 湿度异常值范围# 处理重复值
data = data.drop_duplicates()# 处理时间列
data['Timestamp'] = pd.to_datetime(data['Timestamp'])
data = data.set_index('Timestamp')
- 特征工程
# 提取日期和时间特征
data['Year'] = data.index.year
data['Month'] = data.index.month
data['Day'] = data.index.day
data['Hour'] = data.index.hour
data['Minute'] = data.index.minute
- 划分训练集和测试集
X = data[['Year', 'Month', 'Day', 'Hour', 'Minute']]
y_temperature = data['Temperature']
y_humidity = data['Humidity']X_train, X_test, y_temperature_train, y_temperature_test = train_test_split(X, y_temperature, test_size=0.2, random_state=42)
X_train, X_test, y_humidity_train, y_humidity_test = train_test_split(X, y_humidity, test_size=0.2, random_state=42)
- 构建模型并训练
# 温度预测模型
temperature_model = LinearRegression()
temperature_model.fit(X_train, y_temperature_train)# 湿度预测模型
humidity_model = LinearRegression()
humidity_model.fit(X_train, y_humidity_train)
- 预测未来一段时间的温湿度数据
# 构造待预测的时间特征
future_time = pd.date_range(start=data.index[-1], periods=10, freq='H')
future_data = pd.DataFrame({'Year': future_time.year,'Month': future_time.month,'Day': future_time.day,'Hour': future_time.hour,'Minute': future_time.minute})# 预测温度
future_temperature = temperature_model.predict(future_data)# 预测湿度
future_humidity = humidity_model.predict(future_data)
- 打印预测结果
for i in range(len(future_time)):print('Time: {}, Predicted Temperature: {:.2f}°C, Predicted Humidity: {:.2f}%'.format(future_time[i], future_temperature[i], future_humidity[i]))
这是一个简单的示例,仅供参考,如需指导,可私聊,适当收费
相关文章:
对采集到的温湿度数据,使用python进行数据清洗,并使用预测模型进行预测未来一段时间的温湿度数据。
使用Python对传感器采集到的数据进行数据清洗和预测未来一段时间的温湿度数据,您可以按照以下步骤进行操作: 导入必要的库 import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.linear_model …...
嵌入式SOC之通用图像处理之OSD文字信息叠加的相关实践记录
机缘巧合 机缘巧合下, 在爱芯元智的xx开发板下进行sdk的开发.由于开发板目前我拿到是当前最新的一版(估计是样品),暂不公开开发板具体型号信息.以下简称板子 .很多优秀的芯片厂商,都会提供与开发板配套的完善的软件以及完善的技术支持(FAE),突然觉得爱芯…...
Java日期工具类LocalDateTime
Java日期工具类LocalDateTime 嘚吧嘚LocalDateTime - API创建时间获取年月日时分秒增加时间减少时间替换时间日期比较 嘚吧嘚 压轴的来了,个人感觉LocalDateTime是使用频率最高的工具类,所以本篇像文章详细研究说明一下🧐。 如果看了Java日期…...
从C到C++1
一.思想过渡 前言:明确地说,学了C语言就相当于学了 C 的一半,从C语言转向 C 时,不需要再从头开始,接着C语言往下学就可以,所以我强烈建议先学C语言再学 C。 1.面向过程与面向对象 从“学院派”的角度来…...
[Angular] 笔记 18:Angular Router
Angular Router 视频 chatgpt: Angular 具有内置的大量工具、功能和库,功能强大且经过良好设计,如组件化架构、依赖注入、模块化系统、路由和HTTP客户端等。这些功能可以直接用于项目中,无需额外的设置或第三方库。这简化了开发流…...
微服务全链路灰度方案介绍
目录 一、单体架构下的服务发布 1.1 蓝绿发布 二、微服务架构下的服务发布 三、微服务场景下服务发布的问题 四、全链路灰度解决方案 4.1 物理环境隔离 4.2 逻辑环境隔离 4.3 全链路灰度方案实现技术 4.3.1 标签路由 4.3.2 节点打标 4.3.3 流量染色 4.3.4 分布式链路…...
低代码开发OA系统 低代码平台如何搭建OA办公系统
随着企业业务的复杂化和信息化的推进,如何快速、高效地构建一个适应企业发展需求的OA系统成为许多企业关注的焦点。本文将介绍低代码开发在构建OA系统方面的优势,并以白码低代码平台为例,探讨其在实际应用中的价值和功能。 什么是低代码开发?…...
构建Python的Windows整合包教程
构建Python的Windows整合包教程 原文链接:https://blog.gcc.ac.cn/post/2023/buildpythonwindowsintegrationpackagetutorial/ 构建Python的Windows整合包教程 - 我的博客原文链接 前言 之前的开源项目本地素材搜索有很多人想要Windows整合包,因为Wi…...
《整机柜服务器通用规范》由OCTC正式发布!浪潮信息牵头编制
近日,中国电子工业标准化技术协会开放计算标准工作委员会(OCTC)正式批准发布了《整机柜服务器通用规范》,该标准由浪潮信息牵头,中国工商银行、中国质量认证中心、英特尔、中国计量科学研究院等十余家单位联合编制&…...
Linux:修改和删除已有变量
变量修改 变量的修改有以下几种方式: 变量设置方式说明${变量名#匹配字串}从头向后开始匹配,删除符合匹配字串的最短数据${变量名##匹配字串}从头向后开始匹配,删除符合匹配字串的最长数据${变量名%匹配字串}从尾向前开始匹配,删除符合匹配…...
【23.12.29期--Spring篇】Spring的 IOC 介绍
介绍一下Spring的IOC ✔️引言✔️ lOC的优点✔️Spring的IOC✔️ 拓展知识仓✔️IOC是如何实现的? ✔️引言 所谓的IOC (inversion of control) ,就是控制反转的意思。何为控制反转? 在传统的程序设计中,应用程序代码通常控制着对象的创建和…...
【Python排序算法系列】—— 选择排序
🌈个人主页: Aileen_0v0 🔥热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 💫个人格言:"没有罗马,那就自己创造罗马~" 目录 选择排序 过程演示: 选择排序实现代码: 分析选择排序:…...
会议室占用时间段 - 华为OD统一考试
OD统一考试 题解: Java / Python / C++ 题目描述 现有若干个会议,所有会议共享一个会议室,用数组表示各个会议的开始时间和结束时间, 格式为: [[会议1开始时间,会议1结束时间],[会议2开始时间,会议2结束时间]] 请计算会议室占用时间段。 输入描述 [[会议1开始时间,…...
计算机网络复习5
传输层——端到端 文章目录 传输层——端到端功能传输层的寻址与端口UDPTCPTCP连接管理TCP可靠传输TCP流量控制TCP拥塞控制网络拥塞的处理 功能 从通信和信息处理的角度看,传输层向它上面的应用层提供通信服务,它属于面向通信部分的最高层,同…...
React Hooks 面试题 | 05.精选React Hooks面试题
🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云…...
2024收入最高的编程语言
我的新书《Android App开发入门与实战》已于2020年8月由人民邮电出版社出版,欢迎购买。点击进入详情 1.Python Python 是最流行、用途最广泛的语言之一。它通常用于网络开发、数据科学、机器学习等。 以下是 Python 编程语言的一些主要用途: Web 开发&…...
Android笔记(二十三):Paging3分页加载库结合Compose的实现分层数据源访问
在Android笔记(二十二):Paging3分页加载库结合Compose的实现网络单一数据源访问一文中,实现了单一数据源的访问。在实际运行中,往往希望不是单纯地访问网络数据,更希望将访问的网络数据保存到移动终端的SQL…...
Python实现马赛克图片处理
文章目录 读取图片代码1、导入使用包2、读取图片 操作图片1、上下翻转2、左右翻转3、颜色颠倒4、降低图片精度5、打马赛克 说明: 在python中,图片可以看成一个三维的矩阵,第一维控制着垂直方向,第二维控制着水平方向,第…...
你能描述下你对vue生命周期的理解?在created和mounted这两个生命周期中请求数据有什么区别呢?
一、生命周期是什么 生命周期(Life Cycle)的概念应用很广泛,特别是在政治、经济、环境、技术、社会等诸多领域经常出现,其基本涵义可以通俗地理解为“从摇篮到坟墓”(Cradle-to-Grave)的整个过程在Vue中实…...
【经典算法】有趣的算法之---蚁群算法梳理
every blog every motto: You can do more than you think. 0. 前言 蚁群算法记录 1. 简介 蚁群算法(Ant Clony Optimization, ACO)是一种群智能算法,它是由一群无智能或有轻微智能的个体(Agent)通过相互协作而表现出智能行为,从而为求解复杂问题提供了一个新的可能性…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...
QT: `long long` 类型转换为 `QString` 2025.6.5
在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...
CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)
漏洞概览 漏洞名称:Apache Flink REST API 任意文件读取漏洞CVE编号:CVE-2020-17519CVSS评分:7.5影响版本:Apache Flink 1.11.0、1.11.1、1.11.2修复版本:≥ 1.11.3 或 ≥ 1.12.0漏洞类型:路径遍历&#x…...
掌握 HTTP 请求:理解 cURL GET 语法
cURL 是一个强大的命令行工具,用于发送 HTTP 请求和与 Web 服务器交互。在 Web 开发和测试中,cURL 经常用于发送 GET 请求来获取服务器资源。本文将详细介绍 cURL GET 请求的语法和使用方法。 一、cURL 基本概念 cURL 是 "Client URL" 的缩写…...
uniapp 小程序 学习(一)
利用Hbuilder 创建项目 运行到内置浏览器看效果 下载微信小程序 安装到Hbuilder 下载地址 :开发者工具默认安装 设置服务端口号 在Hbuilder中设置微信小程序 配置 找到运行设置,将微信开发者工具放入到Hbuilder中, 打开后出现 如下 bug 解…...
Leetcode33( 搜索旋转排序数组)
题目表述 整数数组 nums 按升序排列,数组中的值 互不相同 。 在传递给函数之前,nums 在预先未知的某个下标 k(0 < k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...
【Veristand】Veristand环境安装教程-Linux RT / Windows
首先声明,此教程是针对Simulink编译模型并导入Veristand中编写的,同时需要注意的是老用户编译可能用的是Veristand Model Framework,那个是历史版本,且NI不会再维护,新版本编译支持为VeriStand Model Generation Suppo…...
鸿蒙(HarmonyOS5)实现跳一跳小游戏
下面我将介绍如何使用鸿蒙的ArkUI框架,实现一个简单的跳一跳小游戏。 1. 项目结构 src/main/ets/ ├── MainAbility │ ├── pages │ │ ├── Index.ets // 主页面 │ │ └── GamePage.ets // 游戏页面 │ └── model │ …...
