当前位置: 首页 > news >正文

基于huffman编解码的图像压缩算法matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1 Huffman编码算法步骤

4.2 Huffman编码的数学原理

4.3 基于Huffman编解码的图像压缩

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

.........................................................................
for ij = 1:size(I0,3) I     = I0(:,:,ij);[m,n] = size(I); % 将当前通道的图像展平为一维向量  Ivect = I(:);% 获取当前通道的唯一像素值和它们的频率  symb  = single(unique(Ivect)); cnts  = hist(Ivect, symb); Probs = double(cnts) ./ sum(cnts); % 计算Huffman编码字典和平均长度  [dictionary,Lens(ij)] = func_huffdict(symb,Probs); % 对当前通道的图像进行Huffman编码  Ienc                  = func_huffencode(symb,dictionary,Ivect); % 对Huffman编码进行解码,得到无损压缩后的像素值  Idec                  = func_huffdecode(symb,dictionary,Ienc);% 将解码后的一维向量重塑为二维图像  Iout(:,:,ij)          = reshape(Idec,m,[]);
end% 将无损压缩后的图像保存为JPEG格式  
imwrite(Iout,'cmps.jpeg'); 
% 显示图像及其相关信息 
figure; 
Isize1      = imfinfo(Names).FileSize;
Isize2      = (Isize1*(sum(Lens(:))/3))/8; 
CmpRates    = 100*((Isize1 - Isize2)/Isize1); subplot(1,2,1);
imshow(I0); 
title(sprintf("原图 \n 容量: "+ Isize1/(1024*1024) + " MB"));subplot(1,2,2);
imshow(Iout); 
title(sprintf("压缩图 \n 容量: "+ Isize2/(1024*1024) + " MB \n 压缩率: "+CmpRates+"%%]"));
96

4.算法理论概述

        Huffman编码是一种用于无损数据压缩的熵编码算法。由David A. Huffman在1952年提出。该算法完全依据字符出现概率来构造异字头的平均长度最短的码字,有时称之为最佳编码,一般就叫做Huffman编码。

4.1 Huffman编码算法步骤

初始化:根据符号概率的大小顺序对符号进行排序,即按概率大小排序,得到符号序列。
创建节点:将概率最小的两个节点相加,并作为一个新节点,新节点的概率为这两个节点概率之和。然后,将这两个节点从概率队列中删除,将新节点插入队列中。
更新队列:重复上一步骤,直到队列中只剩下一个节点为止。此时,这个节点就是Huffman树的根节点。
生成编码:从根节点开始,向左的边标记为0,向右的边标记为1。然后,从根节点到每个叶节点的路径就构成了该叶节点对应符号的Huffman编码。


4.2 Huffman编码的数学原理

       Huffman编码的数学原理主要基于信息论中的熵的概念。熵是一个用于度量随机变量不确定性的量。对于一个离散随机变量X,其熵H(X)定义为:

        Huffman编码的主要思想是,对于出现概率高的符号,赋予较短的编码;对于出现概率低的符号,赋予较长的编码。这样,平均码长就会接近熵的下界,从而实现高效的无损压缩。

4.3 基于Huffman编解码的图像压缩

       在图像压缩中,首先需要将图像数据转换为一系列符号。这可以通过多种方式实现,例如可以将像素值作为符号,或者将像素值的差值作为符号。然后,统计这些符号的出现概率,并使用Huffman编码算法生成对应的Huffman编码。最后,将编码后的数据以及Huffman树的结构信息一起存储或传输。

       解码时,首先读取Huffman树的结构信息,重建Huffman树。然后,根据Huffman树对编码后的数据进行解码,得到原始的符号序列。最后,将符号序列转换回图像数据。

       Huffman编码是一种非常有效的无损数据压缩算法,特别适用于处理具有不同出现概率的符号序列。在图像压缩中,通过将图像数据转换为符号序列,并使用Huffman编码对符号进行压缩,可以实现较高的压缩比和较好的图像质量。同时,由于Huffman编码是无损的,因此解压后的图像与原始图像完全一致,不会引入任何失真。

5.算法完整程序工程

OOOOO

OOO

O

相关文章:

基于huffman编解码的图像压缩算法matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 Huffman编码算法步骤 4.2 Huffman编码的数学原理 4.3 基于Huffman编解码的图像压缩 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 ..…...

python+django网上购物商城系统o9m4k

语言:Python 框架:django/flask可以定制 软件版本:python3.7.7 数据库:mysql 数据库工具:Navicat 开发工具pycharm/vscode都可以 前端框架:vue.js 系统使用过程主要涉及到管理员和用户两种角色,主要包含个…...

面试题-性能优化

前端项目优化: 一般考虑方面: (挑几点记住) 我们学的: 懒加载: 路由、图片懒加载 骨架屏的使用 压缩文件:可以使用压缩工具(如GZIP)对页面文件进行压缩,减小文件大小,提高页面加载速度。 减少HTTP请求&a…...

自身文档管理规范

之前在 这里 叙述了 用 sphinx 生成静态网站, 并利用 静态网络托管服务 readthedocs 现在我们有了新的需求,想知道这些东西到底是什么。 过程 过程A : markdown/rst -> html mkdocs sphinx相关: pandoc(不能生成整个网站的h…...

php学习05-常量

常量可以理解为值不变的量。常量值被定义后,在脚本的其他任何地方都不能改变。一个常量由英文字母、下划线和数字组成,但数字不能作为首字母出现。 在PHP中使用define()函数来定义常量,该函数的语法格式如下: define(string cons…...

MFC:如何将JPEG等图片显示到对话框客户区

步骤: 0、打开VS2022创建一个基于对话框的MFC应用,项目名称命名为PicShow,创建完成后将对话框客户区中的"确定"按钮等内容删除(具体步骤略)。 1、建立菜单栏:文件->打开、退出。具体步骤&#x…...

MIUI解BL锁+刷系统教程

解除BL锁 打开设置找到My device->Detailed info and specs->连点5下MIUI version(进入开发者模式)重新打开设置找到Additional settings->Developer opentions->Mi lock status->Add account and device下载官方解锁工具包(miflash_unlock&#xf…...

数据结构和算法笔记3:双指针法(快慢指针)

双指针法(快慢指针法)在数组、字符串和链表的操作中是非常常见的,这里结合力扣上的题进行可一下梳理,主要的思路是我们要明确快指针指的是什么,慢指针指的是什么。 1. 移除元素类问题 27. 移除元素 要我们移除目标元…...

股票价格预测 | Python实现Autoformer, FEDformer和PatchTST等模型用于股价预测

文章目录 效果一览文章概述环境描述源码设计效果一览 文章概述 Autoformer、FEDformer和PatchTST是一些用于时间序列预测,包括股价预测的模型。它们都是在Transformer模型的基础上进行了改进和扩展,以更好地适应时间序列数据的特点。 Autoformer:Autoformer是一种自适应Tran…...

Git基础学习_p1

文章目录 一、前言二、Git手册学习2.1 Git介绍&前置知识2.2 Git教程2.2.1 导入新项目2.2.2 做更改2.2.3 Git追踪内容而非文件2.2.4 查看项目历史2.2.5 管理分支🔺2.2.6 用Git来协同工作2.2.7 查看历史 三、结尾 一、前言 Git相信大部分从事软件工作的人都听说过…...

4.Redis事务

4.Redis事务 文章目录 4.Redis事务是什么?能干嘛?Redis 事务 VS 数据库事务命令总结 是什么? 可以一次执行多个命令,本质是一组命令的集合。一个事务中的所有命令都会序列化,按顺序地串行化执行而不会被其它命令插入&…...

golang 图片加水印

需求: 1,员工签到图片加水印 2,水印文字需要有半透明的底色,避免水印看不清 3,图片宽设置在600,小于600或者大于600都需要等比例修改图片的高度,保持水印在图片中的大小和位置 4,处理…...

sudo: /usr/bin/sudo must be owned by uid 0 and have the setuid bit set问题解决方案

sudo: /usr/bin/sudo must be owned by uid 0 and have the setuid bit set问题解决方案 当我们使用sudo su切换权限时提示错误: sudo: /usr/bin/sudo must be owned by uid 0 and have the setuid bit set该错误出现原因:是因为/usr/bin/sudo的权限被…...

提升效率:使用注解实现精简而高效的Spring开发

IOC/DI注解开发 1.0 环境准备1.1 注解开发定义bean步骤1:删除原XML配置步骤2:Dao上添加注解步骤3:配置Spring的注解包扫描步骤4:运行程序步骤5:Service上添加注解步骤6:运行程序知识点1:Component等 1.2 纯注解开发模式1.2.1 思路分析1.2.2 实现步骤步骤1:创建配置类…...

全面好用的setting.xml配置

<?xml version"1.0" encoding"UTF-8"?> <!-- Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information…...

八股文打卡day14——计算机网络(14)

面试题&#xff1a;TCP的Keepalive和HTTP的Keep-Alive是一个东西吗&#xff1f; 我的回答&#xff1a; TCP的Keepalive 1.位于TCP/IP模型的传输层。 2.是用来判活的。客户端会向服务器发送一个Keepalive包来判断&#xff0c;这个TCP连接是否还存活着。 HTTP中的Keep-Alive 1.…...

NCNN环境部署及yolov5pt转ncnn模型转换推理

该内容还未完整&#xff0c;笔记内容&#xff0c;持续补充。 〇开发环境版本 vs2022 cmake3.21.1 ncnn20231027发行版 yolov5s v6.2 vunlkan1.2.198.1 Protobuf3.20.0 Opencv3.4.1 一、模型转换 yolov5s v6.2训练的pt模型&#xff0c;直接导出tourchscript&#xff0c…...

selenium模块有哪些用途?

Selenium模块是一个用于Web应用程序测试的模块&#xff0c;具有多种示例用法。以下是一些示例&#xff1a; 1.打开网页并执行一些基本操作&#xff0c;如点击按钮、输入文本等。 定位网页元素并执行操作&#xff0c;例如使用 find_element 方法查找单个元素&#xff0c;使用 f…...

精品Nodejs实现的校园疫情防控管理系统的设计与实现健康打卡

《[含文档PPT源码等]精品Nodejs实现的校园疫情防控管理系统的设计与实现[包运行成功]》该项目含有源码、文档、PPT、配套开发软件、软件安装教程、项目发布教程、包运行成功&#xff01; 软件开发环境及开发工具&#xff1a; 操作系统&#xff1a;Windows 10、Windows 7、Win…...

爬虫工作量由小到大的思维转变---<第三十五章 Scrapy 的scrapyd+Gerapy 部署爬虫项目>

前言: 项目框架没有问题大家布好了的话,接着我们就开始部署scrapy项目(没搭好架子的话,看我上文爬虫工作量由小到大的思维转变---&#xff1c;第三十四章 Scrapy 的部署scrapydGerapy&#xff1e;-CSDN博客) 正文: 1.创建主机: 首先gerapy的架子,就相当于部署服务器上的;所以…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

并发编程 - go版

1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程&#xff0c;系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...

BLEU评分:机器翻译质量评估的黄金标准

BLEU评分&#xff1a;机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域&#xff0c;衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标&#xff0c;自2002年由IBM的Kishore Papineni等人提出以来&#xff0c;…...

c++第七天 继承与派生2

这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分&#xff1a;派生类构造函数与析构函数 当创建一个派生类对象时&#xff0c;基类成员是如何初始化的&#xff1f; 1.当派生类对象创建的时候&#xff0c;基类成员的初始化顺序 …...

离线语音识别方案分析

随着人工智能技术的不断发展&#xff0c;语音识别技术也得到了广泛的应用&#xff0c;从智能家居到车载系统&#xff0c;语音识别正在改变我们与设备的交互方式。尤其是离线语音识别&#xff0c;由于其在没有网络连接的情况下仍然能提供稳定、准确的语音处理能力&#xff0c;广…...

Visual Studio Code 扩展

Visual Studio Code 扩展 change-case 大小写转换EmmyLua for VSCode 调试插件Bookmarks 书签 change-case 大小写转换 https://marketplace.visualstudio.com/items?itemNamewmaurer.change-case 选中单词后&#xff0c;命令 changeCase.commands 可预览转换效果 EmmyLua…...

智能职业发展系统:AI驱动的职业规划平台技术解析

智能职业发展系统&#xff1a;AI驱动的职业规划平台技术解析 引言&#xff1a;数字时代的职业革命 在当今瞬息万变的就业市场中&#xff0c;传统的职业规划方法已无法满足个人和企业的需求。据统计&#xff0c;全球每年有超过2亿人面临职业转型困境&#xff0c;而企业也因此遭…...