【Spark精讲】一文讲透Spark宽窄依赖的区别
宽依赖窄依赖的区别
- 窄依赖:RDD 之间分区是一一对应的
- 宽依赖:发生shuffle,多对多的关系
- 宽依赖是子RDD的一个分区依赖了父RDD的多个分区
- 父RDD的一个分区的数据,分别流入到子RDD的不同分区
- 特例:cartesian算子对应的CartesianRDD,是通过创建了两个 NarrowDependency 完成了笛卡尔乘积操作,属于窄依赖。

窄依赖
搜索源码,RangeDependency只有UnionRDD使用到了
val rdd1 = sc.parallelize(List(("a",1),("b",2)))
rdd1.partitions.size
//val res4: Int = 2
val rdd2 = sc.parallelize(List(("c",3),("d",4),("a",1)))
rdd2.partitions.size
//val res5: Int = 2
val rdd3 = rdd1.union(rdd2)
//val rdd3: org.apache.spark.rdd.RDD[(String, Int)] = UnionRDD[3] at union at <console>:1
rdd3.partitions.size
//val res7: Int = 4
rdd3.foreach(print)
//输出结果为:(a,1)(b,2)(c,3)(d,4)(a,1)

宽依赖
情况一

举例:cogroup算子、join算子
功能:将两个RDD中键值对的形式元素,按照相同的key,连接而成,只是将两个在类型为(K,V)和(K,W)的 RDD ,返回一个(K,(Iterable<V>,Iterable<W>))类型的 RDD
//cogroup
val rdd1 = sc.parallelize(List(("a",1),("b",2)))
rdd1.partitions.size
//val res4: Int = 2
val rdd2 = sc.parallelize(List(("c",3),("d",4),("a",1)))
rdd2.partitions.size
//val res5: Int = 2
val newRDD = rdd1.cogroup(rdd2)
//val newRDD: org.apache.spark.rdd.RDD[(String, (Iterable[Int], Iterable[Int]))] = MapPartitionsRDD[8] at cogroup at <console>:1
newRDD.foreach(println)
//(a,(Seq(1),Seq(1)))
//(c,(Seq(),Seq(3)))
//(d,(Seq(),Seq(4)))
//(b,(Seq(2),Seq()))//join
val join = rdd1.join(rdd2)
//val join: org.apache.spark.rdd.RDD[(String, (Int, Int))] = MapPartitionsRDD[11] at join at <console>:1
join.foreach(println)
//(a,(1,1))
情况二

举例:groupByKey算子、reduceByKey算子
//groupByKey
val rdd = sc.parallelize(List(("a",1),("b",2),("a",1),("b",2)))
val groupRdd = rdd1.groupByKey()
//val groupRdd: org.apache.spark.rdd.RDD[(String, Iterable[Int])] = ShuffledRDD[16] at groupByKey at <console>:1
groupRdd.foreach(println)
//(b,Seq(2, 2))
//(a,Seq(1, 1))//reduceByKey
val reduceRdd = rdd.reduceByKey(_+_)
//val reduceRdd: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[18] at reduceByKey at <console>:1
reduceRdd.foreach(println)
//(a,2)
//(b,4)
特例:cartesian算子
val rdd1 = sc.parallelize(List(("a",1),("b",2)))
rdd1.partitions.size
//val res4: Int = 2
val rdd2 = sc.parallelize(List(("c",3),("d",4),("a",1)))
rdd2.partitions.size
//val res5: Int = 2
val cartesianRdd = rdd1.cartesian(rdd2)
//val cartesianRdd: org.apache.spark.rdd.RDD[((String, Int), (String, Int))] = CartesianRDD[20] at cartesian at <console>:1
cartesianRdd.partitions.size
//val res24: Int = 4
cartesianRdd.foreach(println)
//((a,1),(c,3))
//((b,2),(c,3))
//((a,1),(d,4))
//((a,1),(a,1))
//((b,2),(d,4))
//((b,2),(a,1))
相关文章:
【Spark精讲】一文讲透Spark宽窄依赖的区别
宽依赖窄依赖的区别 窄依赖:RDD 之间分区是一一对应的宽依赖:发生shuffle,多对多的关系 宽依赖是子RDD的一个分区依赖了父RDD的多个分区父RDD的一个分区的数据,分别流入到子RDD的不同分区特例:cartesian算子对应的Car…...
nacos2.3.0配置中心问题处理
问题:Error to process server push response: {"headers":{},"abilityTable":{"supportPersistentInstanceByGrpc":true},"module":"internal"} 处理办法: 将pom.xml中 <!-- nacos服务注册/发…...
Apollo自动驾驶系统:实现城市可持续交通的迈向
前言 「作者主页」:雪碧有白泡泡 「个人网站」:雪碧的个人网站 ChatGPT体验地址 文章目录 前言引言:1. 什么是微服务架构?2. 微服务架构的组成要素3. 微服务架构的挑战和解决方案4. 微服务架构的可扩展性和弹性 第二部分&#x…...
【WPF.NET开发】附加事件
本文内容 先决条件附加事件语法WPF 如何实现附加事件附加事件方案处理附加事件定义自定义附加事件引发 WPF 附加事件 Extensible Application Markup Language (XAML) 定义了一种语言组件和称为附加事件的事件类型。 附加事件可用于在非元素类中定义新的 路由事件,…...
java浅拷贝BeanUtils.copyProperties引发的RPC异常 | 京东物流技术团队
背景 近期参与了一个攻坚项目,前期因为其他流程原因,测试时间已经耽搁了好几天了,本以为已经解决了卡点,后续流程应该顺顺利利的,没想到 人在地铁上,bug从咚咚来~ 没有任何修改的服务接口,抛出…...
【pynput】鼠标行为追踪并模拟
文章目录 前言基本思路安装依赖包实时鼠标捕获捕获鼠标位置捕获鼠标事件记录点击内容效果图 实时按键捕获控制按键操作捕获按键事件组合键记录区间设置 用户操作记录与回溯基本思路完整代码效果图 利用本文内容从事的任何犯法行为和开发与本人无关,请理性利用技术服…...
docker小白第十天
redis集群主从容错切换案例 3主3从的redis集群,某个主机宕机了,需要对应的从机补位。 docker exec -it redis-node-1 /bin/bash # 进入容器1的命令行 redis-cli -p 6381 # 进入节点1的命令行 cluster nodes # 查看集群信息可以看到1号和6号对应是主从关…...
Apache SSI 远程命令执行漏洞
一、环境搭建 二、访问upload.php 三、写shell <!--#exec cmd"id" --> 四、访问 如图所示,即getshell成功!...
阿里云30个公共云地域、89个可用区、5个金融云和政务云地域
阿里云基础设施目前已面向全球四大洲,公共云地域开服运营30个公共云地域、89个可用区,此外还拥有5个金融云、政务云地域,并且致力于持续的新地域规划和建设,从而更好的满足用户多样化的业务和场景需求。伴随着基础设施的加速投入和…...
Linux驱动开发之杂项设备注册和Linux2.6设备注册
目录 一、杂项设备注册 杂项设备注册简介 杂项设备注册特点: 杂项设备注册相关API misc_register() misc_deregister() 杂项设备注册相关例程 例程简介 源码分享 二、Linux 2.6设备注册 Linux2.6设备注册简介 Linux 2.6设备注册特点 Linux2.6设备注册流程 Linu…...
javafx写一个文档编辑器
文本编辑器是一种用于编辑纯文本文件的工具。它具有基本的文本编辑功能,如插入、删除、复制、粘贴等。文本编辑器通常不具备格式化文本、排版和图形编辑等高级功能,专注于纯文本的编辑。常见的文本编辑器包括记事本(Notepad)、Sublime Text、Visual Studio Code、Atom、Emacs…...
PHP与Angular详细对比 帮助你选择合适的项目技术
开发可有效扩展并提供诺克斯堡级安全性的Web应用程序和网站是每个开发人员的梦想。而使用这样的产品是每个用户的愿望。因此,为您的项目选择最合适和可靠的技术非常关键。 虽然PHP和Angular是完全不同的技术——PHP与JavaScript是一个更恰当的比较——但它们都广泛…...
基于立锜RTQ7882,支持全协议及DP显示功能的PD快充方案
在上一篇文章【基于RTQ7882的车载PD快充方案 - 大大通 (wpgdadatong.com)】中,已经对立锜科技(Richtek)及主打产品RTQ7882的基本功能作了介绍。 本文将分享RTQ7882近期新增的功能,以及其Cost Down版本。 旨…...
2023-12-25 LeetCode每日一题(不浪费原料的汉堡制作方案)
2023-12-25每日一题 一、题目编号 1276. 不浪费原料的汉堡制作方案二、题目链接 点击跳转到题目位置 三、题目描述 圣诞活动预热开始啦,汉堡店推出了全新的汉堡套餐。为了避免浪费原料,请你帮他们制定合适的制作计划。 给你两个整数 tomatoSlices …...
JavaScript 基础通关
快速熟悉 JavaScript 的基础语法,比较高级的比如事件放在后面的笔记中。 JavaScript 1. JavaScript 介绍 1.1 JavaScript 基本介绍 JavaScript 是一门运行在客户端(浏览器)的编程语言,实现人机交互的效果。实现网页特效、表单验…...
目标检测损失函数:IoU、GIoU、DIoU、CIoU、EIoU、alpha IoU、SIoU、WIoU原理及Pytorch实现
前言 损失函数是用来评价模型的预测值和真实值一致程度,损失函数越小,通常模型的性能越好。不同的模型用的损失函数一般也不一样。损失函数主要是用在模型的训练阶段,如果我们想让预测值无限接近于真实值,就需要将损失值降到最低…...
今年努力输出的嵌入式Linux视频
今年努力了一波,几个月周六日无休,自己在嵌入式linux工作有些年头,结合自己也是一直和SLAM工程师对接,所以输出了一波面向SLAM算法工程师Linux课程,当然嵌入式入门的同学也可以学习。下面是合作的官方前面发的宣传文章…...
python非常好用的文件系统监控库
如果你不想使用Watchdog库,而是自己编写代码来监视文件系统的变化,可以使用Python的内置模块os和time来实现。 下面是一个简单的示例代码,演示如何使用os和time模块来监视文件系统中文件的变化: pythonimport osimport timedef m…...
基于SpringBoot的电影购票系统
文章目录 项目介绍主要功能截图:部分代码展示设计总结项目获取方式🍅 作者主页:超级无敌暴龙战士塔塔开 🍅 简介:Java领域优质创作者🏆、 简历模板、学习资料、面试题库【关注我,都给你】 🍅文末获取源码联系🍅 项目介绍 基于SpringBoot的电影购票系统,java项目…...
Spring系列:Spring如何解决循环依赖
❤ 作者主页:欢迎来到我的技术博客😎 ❀ 个人介绍:大家好,本人热衷于Java后端开发,欢迎来交流学习哦!( ̄▽ ̄)~* 🍊 如果文章对您有帮助,记得关注、点赞、收藏、…...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...
51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...
大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...
系统设计 --- MongoDB亿级数据查询优化策略
系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...
安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)
船舶制造装配管理现状:装配工作依赖人工经验,装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书,但在实际执行中,工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...
