当前位置: 首页 > news >正文

排序算法——关于快速排序的详解

目录

1.基本思想

2.基本原理

      2.1划分思想

      2.2排序过程

     (1)选择基准值

     (2)分割过程(Partition)

     (3)递归排序

     (4)合并过程

      2.3具体实例

      2.4实现代码

      2.5关键要点

3.性能分析

      3.1空间效率

      3.2时间效率

      3.3稳定性


1.基本思想

        快速排序(Quick Sort)是一种常用的排序算法,它采用分治法的思想,通过递归地将数据分解成小于基准值和大于基准值的两部分,然后对这两部分进行排序,最终将它们合并起来。

2.基本原理

      2.1划分思想

        在待排序表L[l...n]中任取一个元素pivot作为枢轴(或称基准,通常取首元素),通过一趟排序将待排序表划分为独立的两部分L[l...k-1]和L[k+l...n],使得L[l...k-l]中的所有元素小于pivot;L[k+l...n]中的所有元素大于或等于pivot,则pivot放在了其最终位置L(k)上,这个过程称为一次划分。

      2.2排序过程

     (1)选择基准值

        从待排序数组中选择一个元素作为基准值。通常选择第一个元素,但也可以选择随机元素或数组中间的元素。

     (2)分割过程(Partition)

        将数组按照基准值进行分割,将小于等于基准值的元素放在基准值的左侧,大于基准值的元素放在右侧。同时,基准值所在的位置被确定,这个位置之前的元素都小于等于基准值,之后的元素都大于基准值。这一过程可以使用双指针法来实现。

     (3)递归排序

        对基准值左侧和右侧的子数组分别进行递归排序。即对左侧子数组和右侧子数组分别重复步骤1和步骤2。

     (4)合并过程

        递归排序完成后,整个数组已经被拆分成若干有序的子数组,只需简单地将这些子数组合并即可得到最终的有序数组。

      2.3具体实例

        一趟快速排序的过程是一个交替搜索交换的过程,下面通过实例来介绍

*来自2024版王道数据结构考研复习指导

        设两个指针i和j,初值分别为low和high,取第一个元素49为枢轴赋值到变量pivot。

        对算法的最好理解方式是手动地模拟一遍这些算法。

      2.4实现代码

void Quicksort(ElemType A[], int low, int high) {if (low < high) {//递归跳出的条件//Partition()就是划分操作,将表A [low…high]划分为满足上述条件的两个子表int pivotpos = Partition(A, low, high);//划分Quicksort(A, low, pivotpos - 1);//依次对两个子表进行递归排序Quicksort(A, pivotpos + 1, high);}
}
int Partition(ElemType A[], int low, int high) {//一趟划分ElemType pivot = A[low]; //将当前表中第一个元素设为枢轴,对表进行划分while (low < high) {//循环跳出条件while (low < high && A[high] >= pivot)--high;A[low] = A[high];//将比枢轴小的元素移动到左端while (low < high && A[low] < pivot)++low;A[high] = A[low];//将比枢轴大的元素移动到右端}A[low] = pivot;//枢轴元素存放到最终位置return low;//返回存放枢轴的最终位置
}

      2.5关键要点

        (1)基准值的选择:选择待排序数组中的一个元素作为基准值。通常情况下选择第一个元素,但也可以采用其他策略,如随机选择。

        (2)分割过程:将数组分割成两个子数组,一个包含小于等于基准值的元素,另一个包含大于基准值的元素。这个过程通常被称为分区(partition)。

        (3)递归排序:对分割得到的两个子数组递归地应用快速排序算法。这是分治策略的关键,通过不断递归排序,最终实现整个数组的排序。

        (4)合并过程:将排好序的子数组与基准值合并起来,形成最终的有序数组。

        (5)终止条件:当子数组的长度为1或0时,不再进行递归,因为长度为1或0的数组被认为是有序的。

        (6)不稳定性:快速排序是一种不稳定的排序算法,即相等元素的相对位置可能在排序前后发生变化。

        (7)空间复杂度:快速排序是原地排序算法,不需要额外的存储空间,只需要在递归调用时保持一些辅助变量。

        (8)平均时间复杂度:快速排序的平均时间复杂度为O(n log n),其中n是数组的长度。最坏情况下为O(n^2),但在实际应用中,快速排序通常表现良好。

3.性能分析

      3.1空间效率

        由于快速排序是递归的,需要借助一个递归工作栈来保存每层递归调用的必要信息,其容量与递归调用的最大深度一致。最好情况下为O(log2n);最坏情况下,因为要进行n-1次递归调用,所以栈的深度为O(n);平均情况下,栈的深度为O(log2n)

      3.2时间效率

        快速排序的运行时间与划分是否对称有关,快速排序的最坏情况发生在两个区域分别包含n-1个元素和0个元素时,这种最大限度的不对称性若发生在每层递归上,即对应于初始排序表基本有序或基本逆序时,就得到最坏情况下的时间复杂度为0(n^2)。

        快速排序是所有内部排序算法中平均性能最优的排序算法

      3.3稳定性

        在划分算法中,若右端区间有两个关键字相同,且均小于基准值的记录,则在交换到左端区间后,它们的相对位置会发生变化,即快速排序是一种不稳定的排序方法。例如,表L={3,2,2}经过一趟排序后L={2,2,3}最终排序序列也是L={2,2,3)显然,2与2的相对次序己发生了变化。

相关文章:

排序算法——关于快速排序的详解

目录 1.基本思想 2.基本原理 2.1划分思想 2.2排序过程 &#xff08;1&#xff09;选择基准值 &#xff08;2&#xff09;分割过程&#xff08;Partition&#xff09; &#xff08;3&#xff09;递归排序 &#xff08;4&#xff09;合并过程 2.3具体实例 2.4实现代码 2.5关键要…...

序言:《未来已来》

尊敬的读者&#xff0c; 你是否曾经在面对冗长的报告、繁琐的工作、沉重的生活压力时感到困扰&#xff0c;渴望找到一种方式来提升效率&#xff0c;释放压力&#xff1f;你是否曾经在自我创业的道路上&#xff0c;苦于找不到有效的市场营销方式&#xff0c;寻求突破&#xff1f…...

【Spring实战】22 Spring Actuator 入门

文章目录 1. 定义2. 功能3. 依赖4. 配置5. 常用的应用场景1&#xff09;环境监控2&#xff09;运维管理3&#xff09;性能优化 结论 Spring Actuator 是 Spring 框架的一个模块&#xff0c;为开发人员提供了一套强大的监控和管理功能。本文将深入探讨 Spring Actuator 的定义、…...

JSON安全性

确保JSON处理的安全性是现代Web开发中重要的一环。以下是一些关键的安全实践&#xff0c;用于防止JSON注入攻击以及确保数据在传输过程中的安全性&#xff1a; 1. **验证和清洗输入&#xff1a;** - 在将任何数据写入数据库之前&#xff0c;请确保验证用户输入。对于期望的JSON…...

spring-boot-maven插件repackage(goal)的那些事

前言&#xff1a;在打包Springboot项目成jar包时需要在pom.xml使用spring-boot-maven-plugin来增加Maven功能&#xff0c;在我的上一篇博客<<Maven生命周期和插件的那些事&#xff08;2021版&#xff09;>>中已经介绍过Maven和插件的关系&#xff0c;在此不再赘述&…...

ubuntu的boot分区被删除恢复

在鼓捣黑苹果的时候&#xff0c;误删了ubuntu的boot分区&#xff0c;进系统的时候出现emergency mode&#xff0c;那么现在来讲讲怎么恢复 首先做一个ubuntu的启动盘&#xff0c;然后进入启动盘的系统选择试用 呼出命令行&#xff0c;然后添加一个源 sudo add-apt-repository…...

【userfaultfd 条件竞争】starCTF2019 - hackme

前言 呜呜呜&#xff0c;这题不难&#xff0c;但是差不多一个多月没碰我的女朋友 kernel pwn 了&#xff0c;对我的 root 宝宝也是非常想念&#xff0c;可惜这题没有找到我的 root 宝宝&#xff0c;就偷了她的 flag。 哎有点生疏了&#xff0c;这题没看出来堆溢出&#xff0c…...

深度学习中的自动化标签转换:对数据集所有标签做映射转换

在机器学习中&#xff0c;特别是在涉及图像识别或分类的项目中&#xff0c;标签数据的组织和准确性至关重要。本文探讨了一个旨在高效转换标签数据的 Python 脚本。该脚本在需要更新或更改类标签的场景中特别有用&#xff0c;这是正在进行的机器学习项目中的常见任务。我们将逐…...

c语言-函数指针

目录 前言一、函数指针1.1 函数指针定义1.2 函数指针调用函数1.3 函数指针代码分析 总结 前言 本篇文章介绍c语言中的函数指针以及函数指针的应用。 一、函数指针 函数指针&#xff1a;指向函数的指针。 函数在编译时分配地址。 &函数名 和 函数名代表的意义相同&#xf…...

conda

一、安装 推荐清华源 https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/?CN&OD选择版本 Miniconda3-py39_4.12.0-MacOSX-arm64.pkg测试命令 conda help二、更换仓库 配置加速 https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/没有 .condarc 文件则执行…...

【Vue】灵魂拷问

1、说说Vue的优缺点 优点&#xff1a;渐进式&#xff0c;组件化&#xff0c;轻量级&#xff0c;虚拟dom&#xff0c;响应式&#xff0c;单页面路由&#xff0c;数据与视图分开缺点&#xff1a;单页面不利于seo&#xff0c;不支持IE8以下&#xff0c;首屏加载时间长 2、为什么…...

Scrapy 1.3.0 使用简介

scrapy 1.3.0 python 2.7 创建一个项目&#xff1a; Before you startscraping, you will have to set up a new Scrapy project. Enter a directory whereyou’d like to store your code and run: scrapy startproject tutorial 然后就会得到一系列文件&#xff1a; 第一个爬…...

单机+内部备份_全备案例

此场景为单机数据库节点内部备份&#xff0c;方便部署和操作&#xff0c;但备份REPO与数据库实例处于同一个物理主机&#xff0c;冗余度较低。 前期准备 配置ksql免密登录(必须) 在Kingbase数据库运行维护中&#xff0c;经常用到ksql工具登录数据库&#xff0c;本地免密登录…...

【kettle】pdi/data-integration 打开ktr文件报错“Unable to load step info from XML“

一、报错内容&#xff1a; Unable to load step info from XML step nodeorg.pentaho.di.core.exception.KettleXMLException: Unable to load step info from XMLat org.pentaho.commons.launcher.Launcher.main (Launcher.java:92)at java.lang.reflect.Method.invoke (Met…...

cocos creator人开发小游戏免费素材资源

1、首先熟悉官方的手册和api文档&#xff0c;文档还是比较详细&#xff0c;游戏的方方面面都涉及到了 官方手册&#xff1a; http://docs.cocos.com/creator/manual/zh/官方api文档&#xff1a; http://docs.cocos.com/creator/api/zh/官方论坛&#xff1a; https://forum.coco…...

除了sd webui,compfy还有一个sd UI

GitHub - VoltaML/voltaML-fast-stable-diffusion: Beautiful and Easy to use Stable Diffusion WebUI...

c++属于同一个类的不同对象之间可相互访问private和protected成员

先看一个代码例子&#xff1a; #include <stdio.h>class A { private:char* name;void printA_Name() const {printf(name);} public:A(char* name) {this->name name;}void printA_Name(const A& a) {printf(a.name);}void printA_Name2(const A& a) {a.pr…...

QT/C++ 远程数据采集上位机+服务器

一、项目介绍&#xff1a; 远程数据采集与传输 课题要求:编写个基于TCP的网络数据获取与传输的应用程序; 该程序具备以下功能: 1)本地端程序够通过串口与下位机(单片机)进行通信&#xff0c;实现数据采集任务 2)本地端程序能将所获取下位机数据进行保存(如csv文本格式等); 3…...

算法每日一题:保龄球游戏的获胜者

大家好&#xff0c;我是星恒 今天的每一一题是一道简单题目&#xff0c;但是没能秒掉&#xff0c;原因就是题意理解不到位&#xff0c;边界问题没有判断清楚 不过这本来就是一个试错&#xff0c;迭代&#xff0c;积累经验的过程&#xff0c;加油加油&#xff0c;相信做多了&…...

Do you know about domestic CPUs

Do you know about domestic CPUs CPU指令集国产CPU CPU指令集 国产CPU 参考文献 国产CPU之4种架构和6大品牌指令集及架构一文深入了解 CPU 的型号、代际架构与微架构国产GPU芯片厂商有哪些深入GPU硬件架构及运行机制详解服务器GPU架构和基础知识...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述&#xff1a;iview使用table 中type: "index",分页之后 &#xff0c;索引还是从1开始&#xff0c;试过绑定后台返回数据的id, 这种方法可行&#xff0c;就是后台返回数据的每个页面id都不完全是按照从1开始的升序&#xff0c;因此百度了下&#xff0c;找到了…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎&#xff1a;品融电商&#xff0c;一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中&#xff0c;品牌如何破浪前行&#xff1f;自建团队成本高、效果难控&#xff1b;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

【单片机期末】单片机系统设计

主要内容&#xff1a;系统状态机&#xff0c;系统时基&#xff0c;系统需求分析&#xff0c;系统构建&#xff0c;系统状态流图 一、题目要求 二、绘制系统状态流图 题目&#xff1a;根据上述描述绘制系统状态流图&#xff0c;注明状态转移条件及方向。 三、利用定时器产生时…...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...

Java多线程实现之Thread类深度解析

Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

【笔记】WSL 中 Rust 安装与测试完整记录

#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统&#xff1a;Ubuntu 24.04 LTS (WSL2)架构&#xff1a;x86_64 (GNU/Linux)Rust 版本&#xff1a;rustc 1.87.0 (2025-05-09)Cargo 版本&#xff1a;cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...

群晖NAS如何在虚拟机创建飞牛NAS

套件中心下载安装Virtual Machine Manager 创建虚拟机 配置虚拟机 飞牛官网下载 https://iso.liveupdate.fnnas.com/x86_64/trim/fnos-0.9.2-863.iso 群晖NAS如何在虚拟机创建飞牛NAS - 个人信息分享...

第7篇:中间件全链路监控与 SQL 性能分析实践

7.1 章节导读 在构建数据库中间件的过程中&#xff0c;可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中&#xff0c;必须做到&#xff1a; &#x1f50d; 追踪每一条 SQL 的生命周期&#xff08;从入口到数据库执行&#xff09;&#…...