当前位置: 首页 > news >正文

创新性文生视频模型,南洋理工开源FreeInit

文本领域的ChatGPT,画图领域的Midjourney都展现出了大模型强大的一面,虽然视频领域有Gen-2这样的领导者,但现有的视频扩散模型在生成的效果中仍然存在时间一致性不足和不自然的动态效果。

南洋理工大学S实验室的研究人员发现,扩散模型训练和推理阶段初始噪声的频率分布不均匀,是导致生成视频质量下降的重要原因之一。因此,开发了创新性文生视频模型FreeInit。

FreeInit的核心技术概念是通过重新初始化噪声,来弥合训练和推理之间的差距。研究人员提出了一种创新性的推理采样策略,通过迭代地改进初始噪声的空时低频分量,从而提高时间的一致性。

为验证FreeInit的有效性,研究人员在多个文到视频生成模型上进行了大量实验,包括AnimateDiff、ModelScope和VideoCrafter等。结果显示,FreeInit可以使这些模型的时间一致性指标提高2.92—8.62。

开源地址:https://github.com/tianxingwu/freeinit

论文地址:https://arxiv.org/abs/2312.07537v1

图片

为了找出文生视频模型效果不佳的原因,研究人员通过对多个模型的信噪比进行检测,惊奇地发现,视频扩散模型的推理初始化噪声中,低频信息很难被完全移除

这与高斯白噪声初始化存在明显的分布差距。这种低频信息残留,可能就是导致生成视频效果的时间线,不连贯的主要原因。

为了验证这个想法,研究人员设计了一个创造性的测试实验:他们收集真实视频,使其经过扩散模型的正向推理,得到具有强相关性的噪声;然后再用这个噪声作为推理的初始化,继续生成视频。

结果发现,与高斯噪声相比,相关噪声生成的视频时间一致性和细节清晰度明显增强。这充分证明了低频信息对推理质量的关键影响,也证实了训练推理初始化的差距确实是重要原因

图片

而FreeInit的创新点在于,在模型推理的过程中可精炼低频信息,逐步弥合训练推理的差距,使初始化噪声分布逼近相关性更强的训练噪声,从而生成时间一致性更好的视频。

采样、扩散模块

FreeInit在推理的第一步,先初始化独立高斯噪声,然后通过经典的DDIM离散采样策略,采样生成初步的视频潜码。

通过利用扩散模型已有的去噪功能,从完全随机的噪声中采样出较为清晰的视频潜码。

图片

接着获取上一步生成视频潜码的带有时间相关性的噪声版本,将生成的视频潜码通过原始的高斯噪声进行正向扩散过程,使其重新含有低频时间相关信息。

这里需要复用DDIM采样中使用的高斯噪声,避免引入过多额外随机性。最终得到低频信息较丰富的噪声潜码。

噪声重新初始化

将得到的含低频相关性噪声与新的高斯噪声高频部分结合,得到重新初始化的噪声,并为下一轮采样的初始提供输入。

这里采用频域分解的方式:先通过3D FFT变换噪声潜码到频域,然后与新的高斯噪声通过低通滤波器和高通滤波器分别提取低频和高频部分后拼接。该模块在保留低频信息的同时,也为高频部分引入额外灵活性。

图片

将上述多个模块进行联合、重组,便形成了一次完整的采样优化过程。研究者表示,进行多次重复迭代,可以进一步累积提升低频信息质量,逐步弥合训练和推理的初始化差距,最终让生成视频质量不断改善,时间一致性也越来越好。

本文素材来源FreeInit论文,如有侵权请联系删除

END

相关文章:

创新性文生视频模型,南洋理工开源FreeInit

文本领域的ChatGPT,画图领域的Midjourney都展现出了大模型强大的一面,虽然视频领域有Gen-2这样的领导者,但现有的视频扩散模型在生成的效果中仍然存在时间一致性不足和不自然的动态效果。 南洋理工大学S实验室的研究人员发现,扩散…...

linux的页缓存page cache

目录 如何查看系统的 Page Cache? 为什么 Linux 不把 Page Cache 称为 block cache? Page Cache 的优劣势 Page Cache 的优势 加快数据访问 减少 IO 次数,提高系统磁盘 I/O 吞吐量 Page Cache 的劣势 由于我们开发的程序要运行的话一般…...

数字IC后端实现之Innovus TA-152错误解析(分频generated clock定义错误)

**ERROR: (TA-152): A latency path from the ‘Fall’ edge of the master clock at source pin… Error Code TA-152 在数字IC后端实现innovus中我们经常会看到这类Error,具体信息如下所示。 Error Message **ERROR: (TA-152): A latency path from the ‘Fa…...

虹科方案丨从困境到突破:TigoLeap方案引领数据采集与优化变革

来源:虹科工业智能互联 虹科方案丨从困境到突破:TigoLeap方案引领数据采集与优化变革 原文链接:https://mp.weixin.qq.com/s/H3pd5G8coBvyTwASNS_CFA 欢迎关注虹科,为您提供最新资讯! 导读 在数字化工厂和智能制造时…...

自检服务器,无需服务器、不用编程。

自检服务器,无需服务器、不用编程。 大家好,我是JavaPub. 这几年自媒体原来热,很多人都知道了个人 IP 的重要性。连一个搞中医的朋友都要要做一个自己的网站,而且不想学编程、还不想花 RMB 租云服务。 老读者都知道&#xff0c…...

Java并行流parallelStream()下InheritableThreadLocal引起的问题

Java并行流parallelStream()下InheritableThreadLocal引起的问题 引起问题的代码。 List orgs00 Arrays.asList(new Org("aaa"),new Org("bbb"),new Org("aa0"));List orgs orgs00.parallelStream() .map(org -> {// 模拟从数据库中获取 …...

【C++期末编程题题库】代码+详解18道

适合期末复习c看,或者刚入门c的小白看,有的题会补充知识点,期末复习题的代码一般比较简单,所以语法上没那么严谨。本文所有题目要求全在代码块的最上面。 目录 1、设计复数类 2、设计Computer类 3、实现相加的函数模板 4、圆类…...

一种DevOpts的实现方式:基于gitlab的CICD(一)

写在之前 笔者最近准备开始入坑CNCF毕业的开源项目,看到其中有一组开源项目的分类就是DevOpts。这个领域内比较出名的项目是Argocd,Argo CD 是一个用于 Kubernetes 的持续交付 (Continuous Delivery) 工具,它以声明式的方式实现了应用程序的…...

nodejs和vuejs的区别

一、vue项目开发中,两个经常混合使用。 不同: 1、概念不同: 一个是前端框架,一个是服务端语言。 Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行环境。 Node.js 使用了一个事件驱动、非阻塞式 I/O 的模型,使…...

16、Kubernetes核心技术 - 节点选择器、亲和和反亲和

目录 一、概述 二、节点名称 - nodeName 二、节点选择器 - nodeSelector 三、节点亲和性和反亲和性 3.1、亲和性和反亲和性 3.2、节点硬亲和性 3.3、节点软亲和性 3.4、节点反亲和性 3.5、注意点 四、Pod亲和性和反亲和性 4.1、亲和性和反亲和性 4.2、Pod亲和性/反…...

面试算法96:字符串交织

题目 输入3个字符串s1、s2和s3,请判断字符串s3能不能由字符串s1和s2交织而成,即字符串s3的所有字符都是字符串s1或s2中的字符,字符串s1和s2中的字符都将出现在字符串s3中且相对位置不变。例如,字符串"aadbbcbcac"可以由…...

什么是Vue.js的响应式系统(reactivity system)?如何实现数据的双向绑定?

Vue.js的响应式系统是指一种能够跟踪数据变化并实时更新相关界面的机制。它是Vue.js框架的核心特性之一。 在Vue.js中,你可以使用数据绑定语法将数据绑定到DOM元素上。当绑定的数据发生变化时,Vue.js会自动监听这些变化并更新相关的DOM元素。 Vue.js实…...

力扣labuladong一刷day52天LRU算法

力扣labuladong一刷day52天LRU算法 文章目录 力扣labuladong一刷day52天LRU算法概念一、146. LRU 缓存思路一:使用双向链表加map来手动实现。思路二:使用LinkedHashMap 概念 LRU的全称为Least Recently Used,翻译出来就是最近最少使用的意思…...

CCNP课程实验-06-EIGRP-Trouble-Shooting

目录 实验条件网络拓朴 环境配置开始排错错误1:没有配置IP地址,IP地址宣告有误错误2:R3配置了与R1不同的K值报错了。错误3:R4上的AS号配置错,不是1234错误4:R2上配置的Key-chain的R4上配置的Key-chain不一致…...

判断完全数-第11届蓝桥杯省赛Python真题精选

[导读]:超平老师的Scratch蓝桥杯真题解读系列在推出之后,受到了广大老师和家长的好评,非常感谢各位的认可和厚爱。作为回馈,超平老师计划推出《Python蓝桥杯真题解析100讲》,这是解读系列的第27讲。 判断完全数&#…...

【Bootstrap5学习 day12】

Bootstrap5 导航 Bootstrap5提供了一种简单快捷的方法来创建基本导航,它提供了非常灵活和优雅的选项卡和Pills等组件。Bootstrap5的所有导航组件,包括选项卡和Pillss,都通过基本的.nav类共享相同的基本标记和样式。 创建基本导航 要创建简单…...

算法训练第五十九天|503. 下一个更大元素 II、42. 接雨水

503. 下一个更大元素 II: 题目链接 给定一个循环数组 nums ( nums[nums.length - 1] 的下一个元素是 nums[0] ),返回 nums 中每个元素的 下一个更大元素 。 数字 x 的 下一个更大的元素 是按数组遍历顺序,这个数字之…...

mysql之数据类型、建表以及约束

目录 一. CRUD 1.1 什么是crud 1.2 select(查询) 1.3 INSERT(新增) 1.4 UPDATE(修改) 1.5 DELETE(删除) 二. 函数 2.1 常见函数 2.2 流程控制函数 2.3聚合函数 三. union与union all 3.1 union 3.2 union all 3.3 具体不同 3.4 结论 四、思维导图 一. CRUD 1.1…...

复试 || 就业day04(2024.01.05)项目一

文章目录 前言线性回归房价预测加载数据数据查看数据拆分数据建模模型的验证、应用模型的评估 总结 前言 💫你好,我是辰chen,本文旨在准备考研复试或就业 💫本文内容来自某机构网课,是我为复试准备的第一个项目 &#…...

华为机试真题实战应用【赛题代码篇】-最小传输时延(附python、C++和JAVA代码实现)

目录 问题描述 输入描述: 输出描述: 知识储备 解题思路 思路一...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...

JVM垃圾回收机制全解析

Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

DeepSeek源码深度解析 × 华为仓颉语言编程精粹——从MoE架构到全场景开发生态

前言 在人工智能技术飞速发展的今天,深度学习与大模型技术已成为推动行业变革的核心驱动力,而高效、灵活的开发工具与编程语言则为技术创新提供了重要支撑。本书以两大前沿技术领域为核心,系统性地呈现了两部深度技术著作的精华:…...

【阅读笔记】MemOS: 大语言模型内存增强生成操作系统

核心速览 研究背景 ​​研究问题​​:这篇文章要解决的问题是当前大型语言模型(LLMs)在处理内存方面的局限性。LLMs虽然在语言感知和生成方面表现出色,但缺乏统一的、结构化的内存架构。现有的方法如检索增强生成(RA…...

作为点的对象CenterNet论文阅读

摘要 检测器将图像中的物体表示为轴对齐的边界框。大多数成功的目标检测方法都会枚举几乎完整的潜在目标位置列表,并对每一个位置进行分类。这种做法既浪费又低效,并且需要额外的后处理。在本文中,我们采取了不同的方法。我们将物体建模为单…...

多模态学习路线(2)——DL基础系列

目录 前言 一、归一化 1. Layer Normalization (LN) 2. Batch Normalization (BN) 3. Instance Normalization (IN) 4. Group Normalization (GN) 5. Root Mean Square Normalization(RMSNorm) 二、激活函数 1. Sigmoid激活函数(二分类&…...

在MobaXterm 打开图形工具firefox

目录 1.安装 X 服务器软件 2.服务器端配置 3.客户端配置 4.安装并打开 Firefox 1.安装 X 服务器软件 Centos系统 # CentOS/RHEL 7 及之前(YUM) sudo yum install xorg-x11-server-Xorg xorg-x11-xinit xorg-x11-utils mesa-libEGL mesa-libGL mesa-…...