当前位置: 首页 > news >正文

哈希一致性算法

一致性哈希是什么,使用场景,解决了什么问题?

#网站分配请求问题?

大多数网站背后肯定不是只有一台服务器提供服务,因为单机的并发量和数据量都是有限的,所以都会用多台服务器构成集群来对外提供服务。

但是问题来了,现在有那么多个节点(后面统称服务器为节点,因为少一个字),要如何分配客户端的请求呢?

其实这个问题就是「负载均衡问题」。解决负载均衡问题的算法很多,不同的负载均衡算法,对应的就是不同的分配策略,适应的业务场景也不同。

最简单的方式,引入一个中间的负载均衡层,让它将外界的请求「轮流」的转发给内部的集群。比如集群有 3 个节点,外界请求有 3 个,那么每个节点都会处理 1 个请求,达到了分配请求的目的。

考虑到每个节点的硬件配置有所区别,我们可以引入权重值,将硬件配置更好的节点的权重值设高,然后根据各个节点的权重值,按照一定比重分配在不同的节点上,让硬件配置更好的节点承担更多的请求,这种算法叫做加权轮询。

加权轮询算法使用场景是建立在每个节点存储的数据都是相同的前提。所以,每次读数据的请求,访问任意一个节点都能得到结果。

但是,加权轮询算法是无法应对「分布式系统(数据分片的系统)」的,因为分布式系统中,每个节点存储的数据是不同的。

当我们想提高系统的容量,就会将数据水平切分到不同的节点来存储,也就是将数据分布到了不同的节点。比如一个分布式 KV(key-valu) 缓存系统,某个 key 应该到哪个或者哪些节点上获得,应该是确定的,不是说任意访问一个节点都可以得到缓存结果的。

因此,我们要想一个能应对分布式系统的负载均衡算法。

#使用哈希算法有什么问题?

有的同学可能很快就想到了:哈希算法。因为对同一个关键字进行哈希计算,每次计算都是相同的值,这样就可以将某个 key 确定到一个节点了,可以满足分布式系统的负载均衡需求。

哈希算法最简单的做法就是进行取模运算,比如分布式系统中有 3 个节点,基于 hash(key) % 3 公式对数据进行了映射。

如果客户端要获取指定 key 的数据,通过下面的公式可以定位节点:

hash(key) % 3

如果经过上面这个公式计算后得到的值是 0,就说明该 key 需要去第一个节点获取。

但是有一个很致命的问题,如果节点数量发生了变化,也就是在对系统做扩容或者缩容时,必须迁移改变了映射关系的数据,否则会出现查询不到数据的问题。

举个例子,假设我们有一个由 A、B、C 三个节点组成分布式 KV 缓存系统,基于计算公式 hash(key) % 3 将数据进行了映射,每个节点存储了不同的数据:

现在有 3 个查询 key 的请求,分别查询 key-01,key-02,key-03 的数据,这三个 key 分别经过 hash() 函数计算后的值为 hash( key-01) = 6、hash( key-02) = 7、hash(key-03) = 8,然后再对这些值进行取模运算。

通过这样的哈希算法,每个 key 都可以定位到对应的节点。

当 3 个节点不能满足业务需求了,这时我们增加了一个节点,节点的数量从 3 变化为 4,意味取模哈希函数中基数的变化,这样会导致大部分映射关系改变,如下图:

比如,之前的 hash(key-01) % 3 = 0,就变成了 hash(key-01) % 4 = 2,查询 key-01 数据时,寻址到了节点 C,而 key-01 的数据是存储在节点 A 上的,不是在节点 C,所以会查询不到数据。

同样的道理,如果我们对分布式系统进行缩容,比如移除一个节点,也会因为取模哈希函数中基数的变化,可能出现查询不到数据的问题。

要解决这个问题的办法,就需要我们进行迁移数据,比如节点的数量从 3 变化为 4 时,要基于新的计算公式 hash(key) % 4 ,重新对数据和节点做映射。

假设总数据条数为 M,哈希算法在面对节点数量变化时,最坏情况下所有数据都需要迁移,所以它的数据迁移规模是 O(M),这样数据的迁移成本太高了。

所以,我们应该要重新想一个新的算法,来避免分布式系统在扩容或者缩容时,发生过多的数据迁移。

#使用一致性哈希算法有什么问题?

一致性哈希算法就很好地解决了分布式系统在扩容或者缩容时,发生过多的数据迁移的问题。

一致哈希算法也用了取模运算,但与哈希算法不同的是,哈希算法是对节点的数量进行取模运算,而一致哈希算法是对 2^32 进行取模运算,是一个固定的值

我们可以把一致哈希算法是对 2^32 进行取模运算的结果值组织成一个圆环,就像钟表一样,钟表的圆可以理解成由 60 个点组成的圆,而此处我们把这个圆想象成由 2^32 个点组成的圆,这个圆环被称为哈希环,如下图:

一致性哈希要进行两步哈希:

  • 第一步:对存储节点进行哈希计算,也就是对存储节点做哈希映射,比如根据节点的 IP 地址进行哈希;
  • 第二步:当对数据进行存储或访问时,对数据进行哈希映射;

所以,一致性哈希是指将「存储节点」和「数据」都映射到一个首尾相连的哈希环上

问题来了,对「数据」进行哈希映射得到一个结果要怎么找到存储该数据的节点呢?

答案是,映射的结果值往顺时针的方向的找到第一个节点,就是存储该数据的节点。

举个例子,有 3 个节点经过哈希计算,映射到了如下图的位置:

接着,对要查询的 key-01 进行哈希计算,确定此 key-01 映射在哈希环的位置,然后从这个位置往顺时针的方向找到第一个节点,就是存储该 key-01 数据的节点。

比如,下图中的 key-01 映射的位置,往顺时针的方向找到第一个节点就是节点 A。

所以,当需要对指定 key 的值进行读写的时候,要通过下面 2 步进行寻址:

  • 首先,对 key 进行哈希计算,确定此 key 在环上的位置;
  • 然后,从这个位置沿着顺时针方向走,遇到的第一节点就是存储 key 的节点。

知道了一致哈希寻址的方式,我们来看看,如果增加一个节点或者减少一个节点会发生大量的数据迁移吗?

假设节点数量从 3 增加到了 4,新的节点 D 经过哈希计算后映射到了下图中的位置:

你可以看到,key-01、key-03 都不受影响,只有 key-02 需要被迁移节点 D。

假设节点数量从 3 减少到了 2,比如将节点 A 移除:

你可以看到,key-02 和 key-03 不会受到影响,只有 key-01 需要被迁移节点 B。

因此,在一致哈希算法中,如果增加或者移除一个节点,仅影响该节点在哈希环上顺时针相邻的后继节点,其它数据也不会受到影响

上面这些图中 3 个节点映射在哈希环还是比较分散的,所以看起来请求都会「均衡」到每个节点。

但是一致性哈希算法并不保证节点能够在哈希环上分布均匀,这样就会带来一个问题,会有大量的请求集中在一个节点上。

比如,下图中 3 个节点的映射位置都在哈希环的右半边:

这时候有一半以上的数据的寻址都会找节点 A,也就是访问请求主要集中的节点 A 上,这肯定不行的呀,说好的负载均衡呢,这种情况一点都不均衡。

另外,在这种节点分布不均匀的情况下,进行容灾与扩容时,哈希环上的相邻节点容易受到过大影响,容易发生雪崩式的连锁反应。

比如,上图中如果节点 A 被移除了,当节点 A 宕机后,根据一致性哈希算法的规则,其上数据应该全部迁移到相邻的节点 B 上,这样,节点 B 的数据量、访问量都会迅速增加很多倍,一旦新增的压力超过了节点 B 的处理能力上限,就会导致节点 B 崩溃,进而形成雪崩式的连锁反应。

所以,一致性哈希算法虽然减少了数据迁移量,但是存在节点分布不均匀的问题

如何通过虚拟节点提高均衡度?

要想解决节点能在哈希环上分配不均匀的问题,就是要有大量的节点,节点数越多,哈希环上的节点分布的就越均匀。

但问题是,实际中我们没有那么多节点。所以这个时候我们就加入虚拟节点,也就是对一个真实节点做多个副本。

具体做法是,不再将真实节点映射到哈希环上,而是将虚拟节点映射到哈希环上,并将虚拟节点映射到实际节点,所以这里有「两层」映射关系。

比如对每个节点分别设置 3 个虚拟节点:

  • 对节点 A 加上编号来作为虚拟节点:A-01、A-02、A-03
  • 对节点 B 加上编号来作为虚拟节点:B-01、B-02、B-03
  • 对节点 C 加上编号来作为虚拟节点:C-01、C-02、C-03

引入虚拟节点后,原本哈希环上只有 3 个节点的情况,就会变成有 9 个虚拟节点映射到哈希环上,哈希环上的节点数量多了 3 倍。

你可以看到,节点数量多了后,节点在哈希环上的分布就相对均匀了。这时候,如果有访问请求寻址到「A-01」这个虚拟节点,接着再通过「A-01」虚拟节点找到真实节点 A,这样请求就能访问到真实节点 A 了。

上面为了方便你理解,每个真实节点仅包含 3 个虚拟节点,这样能起到的均衡效果其实很有限。而在实际的工程中,虚拟节点的数量会大很多,比如 Nginx 的一致性哈希算法,每个权重为 1 的真实节点就含有160 个虚拟节点。

另外,虚拟节点除了会提高节点的均衡度,还会提高系统的稳定性。当节点变化时,会有不同的节点共同分担系统的变化,因此稳定性更高

比如,当某个节点被移除时,对应该节点的多个虚拟节点均会移除,而这些虚拟节点按顺时针方向的下一个虚拟节点,可能会对应不同的真实节点,即这些不同的真实节点共同分担了节点变化导致的压力。

而且,有了虚拟节点后,还可以为硬件配置更好的节点增加权重,比如对权重更高的节点增加更多的虚拟机节点即可。

因此,带虚拟节点的一致性哈希方法不仅适合硬件配置不同的节点的场景,而且适合节点规模会发生变化的场景



#总结

不同的负载均衡算法适用的业务场景也不同的。

轮询这类的策略只能适用与每个节点的数据都是相同的场景,访问任意节点都能请求到数据。但是不适用分布式系统,因为分布式系统意味着数据水平切分到了不同的节点上,访问数据的时候,一定要寻址存储该数据的节点。

哈希算法虽然能建立数据和节点的映射关系,但是每次在节点数量发生变化的时候,最坏情况下所有数据都需要迁移,这样太麻烦了,所以不适用节点数量变化的场景。

为了减少迁移的数据量,就出现了一致性哈希算法

一致性哈希是指将「存储节点」和「数据」都映射到一个首尾相连的哈希环上,如果增加或者移除一个节点,仅影响该节点在哈希环上顺时针相邻的后继节点,其它数据也不会受到影响。

但是一致性哈希算法不能够均匀的分布节点,会出现大量请求都集中在一个节点的情况,在这种情况下进行容灾与扩容时,容易出现雪崩的连锁反应。

为了解决一致性哈希算法不能够均匀的分布节点的问题,就需要引入虚拟节点,对一个真实节点做多个副本。不再将真实节点映射到哈希环上,而是将虚拟节点映射到哈希环上,并将虚拟节点映射到实际节点,所以这里有「两层」映射关系。

引入虚拟节点后,可以会提高节点的均衡度,还会提高系统的稳定性。所以,带虚拟节点的一致性哈希方法不仅适合硬件配置不同的节点的场景,而且适合节点规模会发生变化的场景。

完!

相关文章:

哈希一致性算法

一致性哈希是什么,使用场景,解决了什么问题? #网站分配请求问题? 大多数网站背后肯定不是只有一台服务器提供服务,因为单机的并发量和数据量都是有限的,所以都会用多台服务器构成集群来对外提供服务。 但…...

基于SpringBoot的在线考试系统绿色

文章目录 项目介绍主要功能截图:部分代码展示设计总结项目获取方式🍅 作者主页:超级无敌暴龙战士塔塔开 🍅 简介:Java领域优质创作者🏆、 简历模板、学习资料、面试题库【关注我,都给你】 🍅文末获取源码联系🍅 项目介绍 基于SpringBoot的在线考试系统绿色,java…...

设计模式:原型模式

原型模式 定义代码实现使用场景 定义 原型模式(Prototype Pattern)是一种创建型设计模式,它允许通过复制现有的对象来创建新对象,而无需从头开始编写代码。在这个模式中,我们可以使用已经存在的对象作为“原型”&…...

Qt5+VS2013兼容XP方法

用Qt5VS2013编译程序默认配置会在XP运行时报"不是有效的Win32程序" 工作需要必须要XP运行 pro文件中加一句: QMAKE_LFLAGS_WINDOWS /SUBSYSTEM:WINDOWS,5.01 ------------------------------------------------------- qtbase\mkspecs\common\msvc-desktop.conf …...

GitHub Copilot 最佳免费平替:阿里通义灵码

之前分享了不少关于 GitHub Copilot 的文章,不少粉丝都评论让我试试阿里的通义灵码,这让我对通义灵码有了不少的兴趣。 今天,阿七就带大家了解一下阿里的通义灵码,我们按照之前 GitHub Copilot 的顺序分享通义灵码在相同场景下的…...

体系化的进阶学习内容

UWA学堂:传播游戏行业的体系化的进阶学习内容。UWA学堂作为面向开发者的在线学习平台,目前已经上线272门课程,涵盖了3D引擎渲染、UI、逻辑代码等多个模块,拥有完整的学习体系,一直致力于为广大的开发者提供更丰富、更优…...

SpringBoot解决前后端分离跨域问题:状态码403拒绝访问

最近在写和同学一起做一个前后端分离的项目,今日开始对接口准备进行 登录注册 的时候发现前端在发起请求后,抓包发现后端返回了一个403的错误,解决了很久发现是【跨域问题】,第一次遇到,便作此记录✍ 异常描述 在后端…...

【linux】更改infiniband卡在Debian系统的网络接口名

在Debian或任何其他基于Linux的系统中,网络接口的名称由udev系统管理。通过创建udev规则,可以修改网络接口名称。以下是更改InfiniBand卡接口名称的一般步骤: 1. 找到网络接口的属性,以编写匹配的udev规则 可以使用udevadm命令查…...

SPRING BOOT发送邮件验证码(Gmail邮箱)

SPRING BOOT邮件发送验证码 一、Gmail邮箱配置 1、进入Gmail(https://mail.google.com) 2、打开谷歌右上角设置 3、启用POP/IMP 4、启用两步验证(https://myaccount.google.com/security) 5、建立应用程式密码 6、复制保存应用程式密码 二、代码 1、引入依赖 <d…...

Liunx安装FTP和SFTP

ftp端口&#xff1a;20/21 sftp端口&#xff1a;22 一、ftp 1、安装ftp yum install vsftpd #安装ftp 服务 &#xff08;1&#xff09;查看ftp服务的状态 命令&#xff1a;service vsftpd status PS&#xff1a;提示vsftpd: command not found&#xff0c;修改PATH的环境…...

【Mars3d】new mars3d.layer.GeoJsonLayer({不规则polygon加载label不在正中间的解决方案

问题&#xff1a; 1.new mars3d.layer.GeoJsonLayer({type: "polygon",在styleOptions里配置label的时候&#xff0c;发现这个 不规则polygon加载的时候&#xff0c;会出现label不在中心位置。 graphicLayer new mars3d.layer.GeoJsonLayer({ name: "全国省界…...

怎么快速修复mfc140.dll文件?解决mfc140.dll缺失的方法

面对计算机报告的 ​mfc140.dll​ 文件遗失错误&#xff0c;这通常表明系统中缺少一个关键的动态链接库文件&#xff0c;该文件对于运行以 Microsoft Foundation Class (MFC) 库编写的程序十分重要&#xff0c;尤其是那些需要图形界面的应用程序和一些游戏。若没有这个文件&…...

安全防御之入侵检测与防范技术

安全防御中的入侵检测与防范技术主要涉及到入侵检测系统&#xff08;IDS&#xff09;和入侵防御技术&#xff08;IPS&#xff09;。 入侵检测系统&#xff08;IDS&#xff09;是一种对入侵行为自动进行检测、监控和分析的软件与硬件的组合系统。IDS通过从计算机网络或系统中的若…...

Leetcode2807. 在链表中插入最大公约数

Problem: 2807. 在链表中插入最大公约数 文章目录 题目思路注意点Code 题目思路 模拟插入流程&#xff1a; 检测当前节点是否有后置结点&#xff1b;将当前结点与后置结点的值做最大公约数处理得到新结点的值&#xff0c;然后插入到当前结点之后&#xff1b;再将检测结点向后…...

MySQL-DML

DML是数据操纵语言&#xff0c;用来对表中数据进行增删改操纵。 添加数据&#xff1a;INSERT 1.给指定字段添加数据&#xff1a;INSERT INTO 表名(字段名1,字段名2,...)VALUES(值1,值2); 2.给全部字段添加数据&#xff1a;INSERT INTO 表名VALUES(值1,值2) 3.给指定字段批量添…...

开源项目 | 完整部署流程、一款开源人人可用的开源数据可视化分析工具

&#x1f4da; 项目介绍 在互联网数据大爆炸的这几年&#xff0c;各类数据处理、数据可视化的需求使得 GitHub 上诞生了一大批高质量的 BI 工具。 借助这些 BI 工具&#xff0c;我们能够大幅提升数据分析效率、生成更高质量的项目报告&#xff0c;让用户通过直观的数据看到结…...

我建立了一个资源分享群

我建立了一个资源分享群 在为寻找资源犯愁&#xff1f; 在为分享资源犯愁&#xff1f; 一起加入分享资源群&#xff08;是wx群哦&#xff09;吧&#xff01;你可以分享自己的资源帮助他人。你可以在群组里需求资源获取别人的帮助。发广告请绕行&#xff0c;会被拉黑哦 微信…...

C++中几个常用的类型选择模板函数

std::enable_if<B, T>::type 如果编译期满足B&#xff0c;那么返回类型T&#xff0c;否则编译报错 std::conditional<B, T, F>::type 如果编译期满足B&#xff0c;那么返回类型T&#xff0c;否则返回类型F 下面是一个示例&#xff0c;展示如何使用 std::condit…...

【LeetCode】1321. 餐馆营业额变化增长

表: Customer ------------------------ | Column Name | Type | ------------------------ | customer_id | int | | name | varchar | | visited_on | date | | amount | int | ------------------------ 在 SQL 中&#xff0c;(custo…...

【网络技术】【Kali Linux】Wireshark嗅探(八)动态主机配置协议(DHCP)

一、实验目的 本次实验使用 Wireshark &#xff08;“网鲨”&#xff09;流量分析工具进行网络流量嗅探&#xff0c;旨在初步了解动态主机配置协议&#xff08;DHCP协议&#xff09;的工作原理。 二、DHCP协议概述 动态主机配置协议&#xff08; D ynamic H ost C onfigurat…...

算法29:不同路径问题(力扣62和63题)--针对算法28进行扩展

题目&#xff1a;力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 一个机器人位于一个 m x n 网格的左上角 &#xff08;起始点在下图中标记为 “Start” &#xff09;。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角&#xff0…...

openGauss学习笔记-188 openGauss 数据库运维-常见故障定位案例-core问题定位

文章目录 openGauss学习笔记-188 openGauss 数据库运维-常见故障定位案例-core问题定位188.1 磁盘满故障引起的core问题188.1.1 问题现象188.1.2 原因分析188.1.3 处理办法 188.2 GUC参数log_directory设置不正确引起的core问题188.2.1 问题现象188.2.2 原因分析188.2.3 处理办…...

kubernetes入门到进阶(5)

目录 镜像仓库&#xff1a;怎么用好docker hub这个宝藏 什么是镜像仓库&#xff08;Registry&#xff09; 什么是docker hub 如何在docker hub上挑选镜像 docker hub上进行概念股命名规则是什么 该怎么上传自己的镜像 离线环境该怎么办 小结 镜像仓库&#xff1a;怎么用好docke…...

【字典树Trie】LeetCode-139. 单词拆分

139. 单词拆分。 给你一个字符串 s 和一个字符串列表 wordDict 作为字典。请你判断是否可以利用字典中出现的单词拼接出 s 。 注意&#xff1a;不要求字典中出现的单词全部都使用&#xff0c;并且字典中的单词可以重复使用。 示例 1&#xff1a; 输入: s "leetcode&q…...

pytest常用的第三方插件介绍

本节介绍了如何安装和使用第三方插件。如果你想要编写自己的插件&#xff0c;请参阅“编写插件”。 通过pip可以轻松安装第三方插件&#xff1a; pip install pytest-NAME pip uninstall pytest-NAME如果已经安装了插件&#xff0c;pytest会自动找到并集成它&#xff0c;无需手…...

【经验】VSCode连接远程服务器(可以使用git管理、方便查看和编辑Linux源码)

1、查看OpenSSH Windows10通常自带OpenSSH不需要安装。 Windows10下检查是否已经安装OpenSSH的方法: 1)按下快捷键Win + X,选择Windows PoweShell(管理员) 2)输入以下指令: Get-WindowsCapability -Online | ? Name -like ‘OpenSSH*’ 3)如果电脑未安装OpenSSH,…...

机器学习-生存分析:如何基于随机生存森林训练乳腺癌风险评估模型?

一、 引言 乳腺癌是女性最常见的恶性肿瘤之一&#xff0c;也是全球范围内女性死亡率最高的癌症之一。据统计&#xff0c;每年全球有超过200万人被诊断为乳腺癌&#xff0c;其中约60万人死于该疾病。因此&#xff0c;乳腺癌的早期诊断和风险评估对于预防和治疗乳腺癌具有非常重要…...

MySQL学习笔记1: 数据库的简单介绍

目录 1. 数据库是什么2. 数据库这一类软件中的一些典型代表2.1. Oracle2.2. MySQL2.3. SQL Server2.4. SQLite (lite 轻量版) 3. 数据库的类型3.1. 关系型数据库3.2. 非关系型数据库 4. 总结 1. 数据库是什么 数据库是一类软件&#xff0c;这一类软件可以用来管理数据&#xf…...

【Docker】安装ELK(Docker Compose)

一、创建挂载目录 mkdir -p /docker/elk/elasticsearch/{plugins,data} mkdir -p /docker/elk/logstash 二、给目录授权 chmod 777 /docker/elk/elasticsearch/data 创建logstash配置文件 vim /docker/elk/logstash/logstash.conf input {tcp {mode => "server" h…...

【机器学习:欧氏距离 】机器学习中欧氏距离的理解和应用

【机器学习&#xff1a;欧氏距离 】机器学习中欧氏距离的理解和应用 距离公式二维更高的维度点以外的物体属性欧几里得距离的平方概括历史 在数学中&#xff0c;欧氏距离’是指欧氏空间中任意两点之间的直线距离。这种距离可以通过应用勾股定理来计算&#xff0c;利用两点的笛卡…...

一万元做网站/免费seo优化

级数 01 求级数的和函数 调用格式为&#xff1a; fn为级数的通项&#xff0c;k为级数项数&#xff0c;k0与kn为级数的开始项和终止项。 &#xff08;fn需要以符号表达式给出&#xff0c;若fn只有一个自变量&#xff0c;则k可以省略。&#xff09;Ssymsum(fn,k,k0,kn)实践 求…...

网站的导航页怎么做/网站免费制作平台

运行模式是Unity使用过程中的核心要素。随着Unity项目变得更加复杂&#xff0c;进入运行模式会需要更多的时间。进入和退出运行模式的速度越快&#xff0c;意味着开发者进行关卡修改和测试的速度也就越快。我们在Unity 2019.3 Beta版中推出一项实验性功能&#xff1a;Configura…...

上海建网站制/教育机构退费纠纷找谁

第一个JSP实际上&#xff0c;JSP只是简单地将Java放到HTML网页中去而已。你可以将现有的HTML网页将它们的扩展名由“.html”改为“.jsp”&#xff0c;这是一个创建第一个JSP最好的方法。我们可以将上一个练习中的文件将它的扩展名由“.html”改为“.jsp”。然后在浏览器中装载新…...

免费建站软件排行榜/网址大全下载到桌面

注解注入失败有很多种情况&#xff0c;我这里列举其中一种 我直接删掉了SpringBootApplication()括号中的代码&#xff0c;直接就解决了 你可以看看你的启动注解中是否添加了别的代码 我这个比较偏&#xff0c;希望不会有人用到 你的问题可能也会和我相似&#xff0c;启动注…...

wordpress jfinal/免费引流推广工具

本节大纲&#xff1a; 一&#xff1a;双层装饰器&#xff1a;一个函数可以被多层装饰器进行装饰&#xff0c;函数渲染&#xff08;编译&#xff09;从下到上&#xff0c;函数执行从上到下。如下程序&#xff1a; 1 #!/usr/bin/env python2 #-*-coding:utf-8-*-3 # author:liume…...

盐城网站建设制作方案/制作网站的基本步骤

1、前言 面试官&#xff1a;“看过Spring源码吧&#xff0c;简单说说Spring中Bean的生命周期” 大神仙&#xff1a;“基本生命周期会经历实例化 -> 属性赋值 -> 初始化 -> 销毁”。 面试官&#xff1a;“......” 2、Bean的生命周期 如果是普通Bean的生命周期&am…...