当前位置: 首页 > news >正文

算法日志的存在核心在于搭建自检系统

        "相信每一个人执行与日志有关的任务都会遇到这样难题吧?长达几万行的日志,如果我们单纯用肉眼去一个个排查,那么恐怕所耗费的时间是以天为计量单位了。当然这是一种比较夸张的情况,根据我的项目经验,正常情况是十几个站点的人可能每天需要花费3-4个小时去排查日志或者与日志有关却能被日志替代的内容。如果我们能搭建一个智能化的系统,使得这个系统可以智能的读取日志中我们关键的信息,那么会发生什么呢?"

        有些人问,我就想用肉眼看,不行嘛?其实,"不是肉眼看不起,而是智能化日志更有性价比!"没错,如果我们搭建这样一个智能化日志自检系统,N个站n*m个团体每天都能节省n*m*k个工时去干别的事情。

NOTE:本文只是介绍一种思想,所以不会有过多的具体代码讲解,但是可以给上一个成功的案例手册,仅供参考。
———————————————————————————————————————————华丽的分割线

现场人员自检失败表计点位教程

NOTE: 如果没有meterPoint_Self-Checking_sys.py“脚本的请联系我们进行提供

👇

运行该脚本,参考运行命令如下(请确保此时您的工作目录处于meter/log)

#这是一条参考运行命令,请您根据您实际的情况修改-p和-t参数的具体内容
python3 meterPoint_Self-Checking_sys.py -p meterlog -t 30M00000036658634_task1703485183168_20231225141946
# @pararm:-p 是存放日志的路径,该日志包含您刚跑完测试的日志内容。
# @pararm:-t 是您任务的序号,如下图,Ftp图片路径下包含”task“的字符串,也就是灰色框框住的那一串正式您此次任务的序号,输入30M00000036658634_task1703485183168_20231225141946

👇

自动生成自检报表meterlog_checking.txt

里面部分关键内容如下:

👇

接下来大家请对照这张表,找到【需要现场人员自检】【错误】进行搜索排查,有多个,可以从上往下慢慢来。

👇

以【通用类】<序号7>"该点位没有录入"作为例子,打开自检文本meterlog_checking.txt

👇

👇

如果出现无需现场人员自检的错误,需要截图一下日志中有关内容,可能后续还需提供图片我们这边进行优化

一些使用样例图: 

可供实验的代码👑

# -*- coding: utf-8 -*-
'''
参考diamagnetic:
# 兰江
python3 meterPoint_Self-Checking_sys.py -p meterlog -t 30M00000036658634_task1703485183168_20231225141946
# 金鼎
python3 meterPoint_Self-Checking_sys.py -p meterlog -t 30M00000036658634_task1703485183168_20231225141947
'''
import re
import json
import argparse# 创建命令行参数解析器
parser = argparse.ArgumentParser()
parser.add_argument('-p', '--log_file', help='log文件路径')
parser.add_argument('-t', '--task_id', help='任务ID')
args = parser.parse_args()def extract_debug_segments(log_file):debug_segments = []with open(log_file, 'r') as file:lines = file.readlines()start_line = Noneend_line = Nonesegment = []for i, line in enumerate(lines):if 'Debug' in line or '收到请求' in line or '数据库信息' in line:if start_line is None:start_line = isegment.append(line.strip())   elif '结果放入队列待发送' in line:if start_line is not None:end_line = isegment.append(line)debug_segments.append([segment, start_line, end_line])segment = []start_line = Noneend_line = Nonereturn debug_segments
def process_request(request_str):target_index = request_str.index("{")# 按照":"分割字符串split_str = request_str[target_index:]# 获取分割后数组中最后一个索引所保存的信息json_str = split_str.strip().replace("—", "-").replace("'", "\"")objectList_request_str = json.loads(json_str)['objectList'][0]# for k in objectList_request_str:#     print(k)return objectList_request_strdef get_pointList_length(json_str):pattern = r"'Position': '(\[.*?\])'"matches = re.search(pattern, json_str)if matches is None:return 0position_list = json.loads(matches.group(1))# print("position_list:", position_list)return len(position_list)def process_sql(json_str):json_str = json_str[json_str.index("MinValue"):]json_str = "{'" + json_strjson_str = json_str.replace("'", "\"")sql_dict = json.loads(json_str)return sql_dictdef process_result(json_str):json_str = json_str[json_str.index("code"):-5]json_str = "{'" + json_str# print(json_str)json_str = json_str.replace("'", "\"")json_str = json_str.replace("None", "null")sql_dict = json.loads(json_str)return sql_dictdef contains_digit(string):pattern = r'\d'  # 正则表达式模式,匹配任意数字if re.search(pattern, string):return Trueelse:return Falsedef get_path_separator(path):if '/' in path:return '/'elif '\\' in path:return '\\'elif '\\' * 2 in path:return '\\\\'else:return Nonedef extract_work_path_tool(goal_str):split_str = get_path_separator(goal_str)pathIdx = -1splitPaths = goal_str.split(split_str)for idx, ss in enumerate(splitPaths):if ss == 'CCD':pathIdx = idxif pathIdx == -1:raise Exception("您的任务路径中没有CCD路径")work_path = splitPaths[pathIdx-1]return work_pathif __name__ == "__main__":print("---------------------------------------------------------------------")# 摄像机偏移严重+模糊Error_withoutDetctor = []# 未识别出指针Error_withoutPointer = []# 读取ftp图失败Error_loadftp = []# minIO无图Error_withoutMinioImage = []# minIO错图Error_minioErrorImage = []# 点位未录入Error_withoutId = []# 表计类型录入错误Error_clsType = []# 最大最小值设置错误Error_minMaxSet = []# 最大最小值未设置Error_withoutMinMax = []# 未打刻度点位Error_withoutPointList = []# 刻度打点错误Error_PointList = []# 未识别到任何油面表!Error_ymb = []# 画框与推理出来的油面表无匹配Error_withoutYmbMatch = []# OCR没有检测出数字Error_ocrRec = []# OCR没有检测出表盘Error_ocrDet = []# ===========================核# 获取命令行参数log_file = args.log_filework_id = args.task_iddebug_segments = extract_debug_segments(log_file)error_num = 0# not_reading_num = 0# type_num = 0ymb_num, sxb_num, bj_num = 0, 0, 0ymb_errorNum, sxb_errorNum, bj_errorNum = 0, 0, 0# 过滤一遍只剩下最新的filter_schem = {}piNums_schem = {}not_del_ids = []# 任务计算workNUms_schem = {}for idx, segment in enumerate(debug_segments):strat_line = segment[1]end_line = segment[2]for line in segment[0]:if "收到请求" in line:# print('【请求信息】: ',end='')objectList_request_str = process_request(line)# 任务IDwork_path = extract_work_path_tool(objectList_request_str['imageUrlList'][0])if not work_path in workNUms_schem:workNUms_schem[work_path] = 1else:workNUms_schem[work_path] += 1if work_path != work_id:break#点位IDextract_objectId = objectList_request_str['objectId']if not extract_objectId in filter_schem.keys():# 新增filter_schem[extract_objectId] = idxpiNums_schem[extract_objectId] = 1else:# 更新filter_schem[extract_objectId] = idxpiNums_schem[extract_objectId] += 1not_del_ids.append(idx)breakprint('|任务id                                                        |数量')print("---------------------------------------------------------------------")for wnn in workNUms_schem:if work_id == wnn:print(wnn, '     |',workNUms_schem[wnn],end='   ✔\n')else:print(wnn, '     |',workNUms_schem[wnn])print('*********************************************************************')# print(piNums_schem)# 找到第一次出现重复点位的位置print("此次任务id:{}".format(work_id))idsNums_result1 = len({key: value for key, value in piNums_schem.items() if value == 1})print("点位 [=1] 的数量:",idsNums_result1) idsNums_result2 = len({key: value for key, value in piNums_schem.items() if value > 1})print("点位 [>1] 的数量:",idsNums_result2)  print('*********************************************************************')# print(filter_schem, len(filter_schem)) # ------------------过滤结束sumWorkNum, filter_workId_num, filter_objectId_num = 0, 0, 0for idx, segment in enumerate(debug_segments):# print(segment[0],'\n',len(segment[0]))error_flag = FalseftpLoad_flag = False# print('Start Line:', segment[1])# print('End Line:', segment[2])for line in segment[0]:if "收到请求" in line:# print('【请求信息】: ',end='')objectList_request_str = process_request(line)extract_objectId = objectList_request_str['objectId']# print(extract_objectId)# print(objectList_request_str['imageUrlList'][0], work_id)# 过滤掉【不同任务】if not work_id == extract_work_path_tool(objectList_request_str['imageUrlList'][0]):filter_workId_num += 1break# 过滤掉【同任务相同点位取最新】if ( piNums_schem[extract_objectId] > 1 ) and ( idx != filter_schem[extract_objectId] ):# print(idx, filter_schem[extract_objectId])filter_objectId_num += 1break# 这里才是没被break的真正点位数量sumWorkNum += 1elif '数据库信息' in line:# print(line)if line.split("【数据库信息】")[-1] == '{}':# 数据库信息为空# print('*pointList_length:0')# print('{}')Error_withoutId.append(extract_objectId)error_num += 1breakelse:# 数据库有信息pointList_length = get_pointList_length(line)sql_schem = process_sql(line)MinValue = sql_schem['MinValue']MaxValue = sql_schem['MaxValue']meter_type = sql_schem['AlgorithmType']ImagePath = sql_schem['ImagePath']if meter_type == 'meter_v5':bj_num += 1if meter_type == 'meter_ywj':ymb_num += 1if meter_type == 'paddleocr':sxb_num += 1if meter_type == 'meter_v5':if len(MinValue)== 0 or len(MaxValue) == 0:Error_withoutMinMax.append(extract_objectId)MinValue = float(0)MaxValue = float(100)error_flag = Trueelse:MinValue = float(MinValue)MaxValue = float(MaxValue)# 表计类型录入错误(如果打点了,但表计类型不是meter_v5)if meter_type != 'meter_v5' and pointList_length != 0:Error_clsType.append(extract_objectId)error_flag = True# 未打刻度点位if meter_type == 'meter_v5' and pointList_length == 0:Error_withoutPointList.append(extract_objectId)error_flag = True# print(sql_schem, end=',')# print("*pointList_length:", pointList_length)elif '结果放入队列待发送' in line:result_schem = process_result(line)# print('【结果队列信息】:',end='')# print(result_schem)if result_schem['code'] == '2001':Error_loadftp.append(extract_objectId)ftpLoad_flag = Trueerror_flag = Truebreakif result_schem['desc'] == '未识别到任何油面表!':error_flag = TrueError_ymb.append(extract_objectId)else:splitContent = line.split("【Debug】")[-1]if "成功检测到表盘!表盘信息是" in splitContent:det_clsType = splitContent.split(":")[-1].strip().strip("").strip("[]").strip()if splitContent.split(":")[-1].strip().strip("") == "[]":Error_withoutDetctor.append(extract_objectId)error_flag = Trueif not 'sxb' in det_clsType and meter_type == 'paddleocr':Error_ocrDet.append(extract_objectId) error_flag = Trueif 'ywb' in det_clsType:ywb_minMax = [[-20, 140],[0, 160]]iter_minMax = [MinValue, MaxValue]if not iter_minMax in ywb_minMax:Error_minMaxSet.append(extract_objectId)error_flag = Trueelif 'xldlb' in det_clsType:xldlb_minMax = [[0, 3.0],[0, 10],[0, 9],[0, 1]]iter_minMax = [MinValue, MaxValue]if not iter_minMax in xldlb_minMax:Error_minMaxSet.append(extract_objectId)error_flag = True# if '动作次数' in splitContent:#     print(splitContent)# if '泄漏电流值' in splitContent:#     print(splitContent)if 'OCR没有检测出数字' in splitContent:Error_ocrRec.append(extract_objectId)error_flag = Trueif "没识别出指针" in splitContent:Error_withoutPointer.append(extract_objectId)error_flag = True# 画框与推理出来的油面表无匹配if '画框与推理出来的油面表无匹配' in splitContent:Error_withoutYmbMatch.append(extract_objectId)error_flag = Trueif len(ImagePath) == 0 or "MinIo中缺失该点位基准图" in splitContent:Error_withoutMinioImage.append(extract_objectId)error_flag = True# 用于验证if '读数结果' in splitContent and not contains_digit(splitContent):# not_reading_num +=1# 验证后 无读数个数和错误个数基本一致->代表验证成功# print(not_reading_num)continueif error_flag and not ftpLoad_flag: if meter_type == 'meter_v5':bj_errorNum += 1if meter_type == 'meter_ywj':ymb_errorNum += 1if meter_type == 'paddleocr':sxb_errorNum += 1error_num += 1elif error_flag and ftpLoad_flag:error_num += 1meter_type = ''print("错误总数比:【{}/{}】-> 即正确率:{}%".format(error_num,sumWorkNum,round((1-error_num/sumWorkNum)*100, 2)))# ===========================核# 写入# with open('meterLog_checking.txt', 'w') as output_file:with open('meterLog_checking-{}.txt'.format(work_id), 'w') as output_file:output_file.write('您这次序号为[{}]的任务:\n---------------------------------\n一共测试表计数量:[{}]个, 错误点位为:[{}]个, 未打点个数为:[{}]。\n<在此之中>\n,指针类表计成功占[{}/{}]个\n,油面表成功占[{}/{}]个\n,数显表成功占[{}/{}]个。'.format(work_id,sumWorkNum,error_num,len(Error_withoutId),bj_num - bj_errorNum, bj_num,ymb_num - ymb_errorNum, ymb_num, sxb_num - sxb_errorNum, sxb_num))# output_file.write("-> 即正确率:{}%".format(error_num,sumWorkNum,round((1-error_num/sumWorkNum)*100, 2)))output_file.write('\n')output_file.write('---------------------------------\n')output_file.write('NOTE:接下来,请您根据所需要查询的错误名称,使用<ctrl+F>的方式进行查询。\n')output_file.write('---------------------------------\n')output_file.write("【错误】可能存在摄像机偏移严重/模糊<数量:{}>:".format(str(len(set(Error_withoutDetctor)))) + "\n")output_file.write("\n".join(set(Error_withoutDetctor)))output_file.write('\n')output_file.write("【错误】未识别出指针<数量:{}>:".format(str(len(set(Error_withoutPointer)))) + "\n") output_file.write("\n".join(set(Error_withoutPointer)))output_file.write('\n')output_file.write("【错误】读取ftp图失败<数量:{}>:".format(str(len(set(Error_loadftp)))) + "\n")output_file.write("\n".join(set(Error_loadftp)))output_file.write('\n')output_file.write("【错误】minIO无图<数量:{}>:".format(str(len(set(Error_withoutMinioImage)))) + "\n")output_file.write("\n".join(set(Error_withoutMinioImage)))output_file.write('\n')output_file.write("【错误】该点位没有录入<数量:{}>:".format(str(len(set(Error_withoutId)))) + "\n")output_file.write("\n".join(set(Error_withoutId)))output_file.write('\n')output_file.write("【错误】表计类型录入错误<数量:{}>:".format(str(len(set(Error_clsType)))) + "\n")output_file.write("\n".join(set(Error_clsType)))output_file.write('\n')output_file.write("【错误】最大最小值未设置<数量:{}>:".format(str(len(set(Error_withoutMinMax)))) + "\n")output_file.write("\n".join(set(Error_withoutMinMax)))output_file.write('\n')output_file.write("【错误】未打刻度点位<数量:{}>:".format(str(len(set(Error_withoutPointList)))) + "\n")output_file.write("\n".join(set(Error_withoutPointList)))output_file.write('\n')output_file.write("【错误】最大最小值设置错误<数量:{}>:".format(str(len(set(Error_minMaxSet)))) + "\n")output_file.write("\n".join(set(Error_minMaxSet)))output_file.write('\n')output_file.write("【错误】存在刻度打点错误(暂未启用)<数量:{}>:".format(str(len(set(Error_PointList)))) + "\n")output_file.write("\n".join(set(Error_PointList)))output_file.write('\n')for ey in Error_ymb:if ey in Error_withoutYmbMatch:Error_ymb.remove(ey)output_file.write("【错误】未识别到任何油面<数量:{}>:".format(str(len(set(Error_ymb)))) + "\n")output_file.write("\n".join(set(Error_ymb)))output_file.write('\n')output_file.write("【错误】画框与推理结果无匹配<数量:{}>:".format(str(len(set(Error_withoutYmbMatch)))) + "\n")output_file.write("\n".join(set(Error_withoutYmbMatch)))output_file.write('\n')output_file.write("【错误】OCR没有检测出数字<数量:{}>:".format(str(len(set(Error_ocrRec)))) + "\n")output_file.write("\n".join(set(Error_ocrRec)))output_file.write('\n')output_file.write("【错误】OCR没有检测出表盘<数量:{}>:".format(str(len(set(Error_ocrDet)))) + "\n")output_file.write("\n".join(set(Error_ocrDet)))output_file.write('\n')print('<*总共统计数量:{}>\n<*过滤掉的非此次任务ID数量:{}>\n<*过滤掉的重复的点位ID数量:{}>'.format(len(debug_segments),filter_workId_num, filter_objectId_num))print('*********************************************************************')

可供实验的日志👑

相关文章:

算法日志的存在核心在于搭建自检系统

"相信每一个人执行与日志有关的任务都会遇到这样难题吧&#xff1f;长达几万行的日志&#xff0c;如果我们单纯用肉眼去一个个排查&#xff0c;那么恐怕所耗费的时间是以天为计量单位了。当然这是一种比较夸张的情况&#xff0c;根据我的项目经验&#xff0c;正常情况是十…...

【2023开发组一等奖】定位家乡味——北京市老乡探店寻味系统

作品介绍 1 需求分析 中国人的身上都系着两根线,一条线牵引着我们去远方,一条线牵引着我们归故乡。在当今社会,我们因为各种各样的原因背起行囊远离故乡去往千里之外的远方,而那暗涌在血脉的乡愁总会使我们在看到家乡菜的时候,心底溢出一种不可言说的温暖。那么,当你在异…...

37-数据类型,一元运算符typeof,字符串string,布尔Boolean,未定义undefined,空null,数组Array

<body><script>// 0.1加0.2不等于0.3&#xff0c;正确的运算方法如下console.log(0.10.2);var x 0.1;var y 0.2;console.log((x*10y*10)/10);</script> </body> 简单数据类型&#xff08;5种&#xff09;&#xff1a;数字number&#xff0c;字符串s…...

zabbix部署

zabbix部署 部署zabbix服务被监测主机部署zabbix-agent2 使用版本 组件版本centos7.9zabbix5.0php7.2.24MariaDB5.5.68 部署zabbix服务 关闭防火墙和selinux [rootnode ~]# systemctl status firewalld ● firewalld.service - firewalld - dynamic firewall daemonLoaded: …...

深入理解Java源码:提升技术功底,深度掌握技术框架,快速定位线上问题

为什么要看源码&#xff1a; 1、提升技术功底&#xff1a; 学习源码里的优秀设计思想&#xff0c;比如一些疑难问题的解决思路&#xff0c;还有一些优秀的设计模式&#xff0c;整体提升自己的技术功底 2、深度掌握技术框架&#xff1a; 源码看多了&#xff0c;对于一个新技术…...

寒假前端第一次作业

1、用户注册&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>用户注册</title> …...

【LabVIEW FPGA入门】创建第一个LabVIEW FPGA程序

本教程仅以compactRIO&#xff08;FPGA-RT&#xff09;举例 1.系统配置 1.1软件安装 FPGA-RT 1. LabVIEW Development System (Full or Professional) 2. LabVIEW Real-Time Module 3. LabVIEW FPGA Module 4. NI-RIO drivers 1.2硬件配置 1.使用线缆连接CompactRIO至主机…...

【STM32】STM32学习笔记-USART串口数据包(28)

00. 目录 文章目录 00. 目录01. 串口简介02. HEX数据包03. 文本数据包04. HEX数据包接收05. 文本数据包接收06. 预留07. 附录 01. 串口简介 串口通讯(Serial Communication)是一种设备间非常常用的串行通讯方式&#xff0c;因为它简单便捷&#xff0c;因此大部分电子设备都支持…...

Java网络爬虫--HttpClient

目录标题 技术介绍有什么优点&#xff1f;怎么在项目中引入&#xff1f; 请求URLEntityUtils 类GET请求带参数的GET请求POST请求 总结 技术介绍 HttpClient 是 Apache Jakarta Common 下的子项目&#xff0c;用来提供高效的、功能丰富的、支持 HTTP 协议的客户端编程工具包。相…...

若依项目的table列表中对每一个字段增加排序按钮(单体版和前后端分离版)

一、目标:每一个字段都添加上下箭头用来排序 只需要更改前端代码,不需要更改后端代码,后面会讲解原理 二、单体版实现方式: 1.在options中添加sortable:true 2.在需要排序的字段中添加sortable:true 三、前后端分离版 1.el-table上添加@sort-change=“handleSortChange”…...

Linux自动化部署脚本

1:最近项目部署比较频繁终于熬不住了 就有下面的这东西 #!/bin/sh #报错停止运行 set -e # 获取tomcat的PID TOMCAT_PID$(ps -ef | grep tomcat | grep -v grep | awk {print $2}) # tomcat的启动文件位置 START_TOMCAT/mnt/tomcat/bin/startup.sh # 项目文件部署位置 PROJECT…...

lvgl修改图片大小上限

在lvgl中读取图片文件时&#xff0c;被读取的图片具有上限&#xff0c;也就是2048像素。这会造成两个非预期的结果&#xff1a; 超过2048像素的部分会被裁去。表示图片的结构体lv_img_t中的w和h变量值是图片像素被2048求余。例如&#xff0c;当一个图片高为2048像素时&#xf…...

阻止持久性攻击改善网络安全

MITRE ATT&CK框架是一个全球可访问的精选知识数据库&#xff0c;其中包含基于真实世界观察的已知网络攻击技术和策略。持久性是攻击者用来访问系统的众多网络攻击技术之一;在获得初始访问权限后&#xff0c;他们继续在很长一段时间内保持立足点&#xff0c;以窃取数据、修改…...

MFC与Qt多个控件响应统一响应消息处理

就目前使用C开发框架来说&#xff0c;今天来讲述下MFC框架下与Qt框架下&#xff0c;如何让多个控件响应统一消息处理方法。 功能&#xff1a;假设有5个按钮&#xff0c;需要响应同一个处理函数&#xff0c;该如何实现呢&#xff1f; Qt方式 开发环境&#xff1a;win10 VS201…...

Camunda rest api鉴权

对于rest api 不能没有限制的任何人随意调用&#xff0c;需要提供账号信息。 一&#xff1a;工作流引擎增加过滤器 /*** 对/engine-rest/*进行鉴权&#xff0c;防止非法攻击* 客户端调用需要配置用户凭证否则报错401* camunda.bpm.client.basic-auth.username* camunda.bpm.cl…...

【PostgreSQL】在DBeaver中实现序列、函数、视图、触发器设计

【PostgreSQL】在DBeaver中实现序列、函数、触发器、视图设计 基本配置一、序列1.1、序列使用1.1.1、设置字段为主键&#xff0c;数据类型默认整型1.1.2、自定义序列&#xff0c;数据类型自定义 1.2、序列延申1.2.1、理论1.2.2、测试1.2.3、小结 二、函数2.1、SQL直接创建2.1.1…...

PyQt5-小总结

之前学习PyQt5&#xff0c;然后那段时间想做一个桌面小程序&#xff0c;后来由于学习内容较多就做了一小部分&#xff0c;但是可以进行页面跳转。大家如果是初学者对Python感兴趣而且刚学数据库时可以看看代码&#xff0c;可能会有点启发。 效果&#xff1a; 登录进来是这&…...

vue父组件给子组件传值,子组件不渲染的原因及解决方法

父组件传递给子组件的数据&#xff0c;如果是一个复杂对象&#xff08;例如一个数组或对象&#xff09;&#xff0c;那么子组件只会监听对象的引用而不是对象的内容。这意味着当对象的内容发生变化时&#xff0c;子组件不会更新。 解决&#xff1a; 1、在子组件使用 watch 监听…...

【数据库】MySQL锁

一、锁的基本概念 1、锁的定义 锁是协调多个进程或线程并发访问数据库资源的一种机制。 MySQL中的锁是在服务器层或者存储引擎层实现的&#xff0c;保证了数据访问的一致性与有效性。但加锁是消耗资源的&#xff0c;锁的各种操作&#xff0c;包括获得锁、检测锁是否已解除、…...

mongodb学习篇

目录 前言基本概念数据库-database集合-collection文档-document 部署mongodblinux安装mongodbdocker安装mongodb MongoDB Shell (mongosh)命令行工具mongodb可视化-mongodb-compass、mongo-expressmongodb配置文件mongodb库、集合、文档库基本操作集合基本操作文档的增删改查C…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统&#xff1a;ubuntu22.04 IDE:Visual Studio Code 编程语言&#xff1a;C11 题目描述 地上有一个 m 行 n 列的方格&#xff0c;从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子&#xff0c;但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

.Net Framework 4/C# 关键字(非常用,持续更新...)

一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代&#xff0c;加密货币作为一种新兴的金融现象&#xff0c;正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而&#xff0c;加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下&#xff0c;稳定…...

LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》

这段 Python 代码是一个完整的 知识库数据库操作模块&#xff0c;用于对本地知识库系统中的知识库进行增删改查&#xff08;CRUD&#xff09;操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 &#x1f4d8; 一、整体功能概述 该模块…...

第7篇:中间件全链路监控与 SQL 性能分析实践

7.1 章节导读 在构建数据库中间件的过程中&#xff0c;可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中&#xff0c;必须做到&#xff1a; &#x1f50d; 追踪每一条 SQL 的生命周期&#xff08;从入口到数据库执行&#xff09;&#…...

MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用

文章目录 一、背景知识&#xff1a;什么是 B-Tree 和 BTree&#xff1f; B-Tree&#xff08;平衡多路查找树&#xff09; BTree&#xff08;B-Tree 的变种&#xff09; 二、结构对比&#xff1a;一张图看懂 三、为什么 MySQL InnoDB 选择 BTree&#xff1f; 1. 范围查询更快 2…...

C语言中提供的第三方库之哈希表实现

一. 简介 前面一篇文章简单学习了C语言中第三方库&#xff08;uthash库&#xff09;提供对哈希表的操作&#xff0c;文章如下&#xff1a; C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...