图像分类任务的可视化脚本,生成类别json字典文件
1. 前言
之前的图像分类任务可视化,都是在train脚本里, 用torch中dataloader将图片和类别加载,然后利用matplotlib库进行可视化。
如这篇文章中:CNN 卷积神经网络对染色血液细胞分类(blood-cells)

在分类任务中,必定经历过图像预处理,缩放啊、随即裁剪啊之类的,可视化效果不太明显
本章将从数据角度出发,直接根据数据目录将图像可视化,随机展示所有图片的四张图片,可视化后并且保存
目标检测的可视化可以参考:
关于目标检测任务中,YOLO(txt格式)标注文件的可视化
关于目标检测任务中,XML(voc格式)标注文件的可视化
2. 根据目录可视化 (无需类别的json文件)
目录如下:代码应该data同一路径

2.1 代码介绍
root 传入的是文件夹路径,也就是多个类别文件夹的上一级目录

将所有图像保存,为了知道图片的类别,需要把图片的父目录保存。为了方便,这里生成一个列表文件,key 是目录类别,value 是相应的图像路径

展示的代码很简单,生成随机数,将列表的文件提取出来,然后展示四张就行了

2.2 可视化结果
可视化结果

代码会在当前目录生成刚刚可视化展示的图片

2.3 完整代码
如下:
import os
import matplotlib.pyplot as plt
import random
from PIL import Imagedef main(path):classes = [i for i in os.listdir(path)] # ['cat', 'dog']# 将所有图片按照 类别:路径 字典形式保存images_path = [] # [{'cat': './data/train\\cat\\Baidu_0000.jpeg'}, {'cat': './data/train\\cat\\Baidu_0002.jpeg'}]for cla in classes:for i in os.listdir(os.path.join(path,cla)):dic = {} # 类别:图像路径img_path = os.path.join(path,cla,i)dic[cla] = img_path # {'cat': './data/train\\cat\\Baidu_0000.jpeg'}images_path.append(dic)# 随机展示4张图像plt.figure(figsize=(12,8))for i in range(4):r = random.randint(0,len(images_path)-1) # 生成随机数label,im_path= list(images_path[r].keys())[0],list(images_path[r].values())[0]# cat , ./data/train\cat\Baidu_0049.jpegim = Image.open(im_path)plt.subplot(2,2,i+1)plt.title(label)plt.imshow(im)plt.savefig('show.png') # 保存图片plt.show()if __name__ == '__main__':root = './data/train' # 传入目录main(path=root)
3.生成类别json字典文件
图像分类任务,有的没有提供类别的字典文件,这里也记录一下如何生成json文件

可以通过下面代码生成
import os
import jsondef main(path):classes = [i for i in os.listdir(path)] # ['cat', 'dog']labels = {} # 类别的字典文件for index,name in enumerate(classes):labels[index] = namelabels = json.dumps(labels,indent=4)with open('./class_indices.json','w') as f: # 保存成json文件f.write(labels)if __name__ == '__main__':root = './data/train' # 传入目录main(path=root)
结果如下:

或者直接新建json文件,然后对照目录按照上面的方式输入也行
相关文章:
图像分类任务的可视化脚本,生成类别json字典文件
1. 前言 之前的图像分类任务可视化,都是在train脚本里, 用torch中dataloader将图片和类别加载,然后利用matplotlib库进行可视化。 如这篇文章中:CNN 卷积神经网络对染色血液细胞分类(blood-cells) 在分类任务中,必定…...
Adding Conditional Control to Text-to-Image Diffusion Models——【代码复现】
官方实现代码地址:lllyasviel/ControlNet: Let us control diffusion models! (github.com) 一、前言 此项目的使用需要显存大于8G,训练自己的ControlNet或需要更大,因此请注意查看自身硬件是否符合。 在此之前请确保已经安装好python以及…...
java-Exchanger详解
1.概述 java.util.concurrent.Exchanger。这在Java中作为两个线程之间交换对象的公共点。 2.Exchanger简介 Exchanger类可用于在两个类型为T的线程之间共享对象。该类仅提供了一个重载的方法exchange(T t)。 当调用exchanger时,它会等待成对的另一个线程也调用它…...
‘再战千问:启程你的提升之旅‘,如何更好地提问?
例如,很多时候我们提出一些问题,然而通义千问提供的答案,并非完全符合我们的期望。这并非由于通义千问的智能程度不足,而是提问者的“提问技巧”尚未掌握得当。 难道提问还需要讲究艺术性吗?确实如此。今天,…...
java SSM社区文化服务管理系统myeclipse开发mysql数据库springMVC模式java编程计算机网页设计
一、源码特点 java SSM社区文化服务管理系统是一套完善的web设计系统(系统采用SSM框架进行设计开发,springspringMVCmybatis),对理解JSP java编程开发语言有帮助,系统具有完整的 源代码和数据库,系统主…...
go执行静态二进制文件和执行动态库文件
目的和需求:部分go的核心文件不开源,例如验证,主程序核心逻辑等等 第一个想法,把子程序代码打包成静态文件,然后主程序执行 子程序 package mainimport ("fmt""github.com/gogf/gf/v2/os/gfile"…...
通过示例解释序列化和反序列化-Java
序列化和反序列化是Java(以及通常的编程)中涉及将对象转换为字节流,以及反之的过程。当你需要传输或存储对象的状态时特别有用,比如将其通过网络发送或持久化到文件中。 序列化: 定义:序列化是将对象的状…...
k8s源码阅读环境配置
源码阅读环境配置 k8s代码的阅读可以让我们更加深刻的理解k8s各组件的工作原理,同时提升我们Go编程能力。 IDE使用Goland,代码阅读环境需要进行如下配置: 从github上下载代码:https://github.com/kubernetes/kubernetes在GOPATH目…...
Java JDBC整合(概述,搭建,PreparedStatement和Statement,结果集处理)
一、JDBC的概述: JDBC:是一种执行sql语句的Java APL,可以为多种关系类型数据库提供统一访问,它由一组用Java语言编写的类和接口组成。有了JDBC,Java人员只需要编写一次程序就可以访问不同的数据库。 JDBC APL…...
Nginx 负载均衡集群 节点健康检查
前言 正常情况下,nginx 做反向代理负载均衡的话,如果后端节点服务器宕掉的话,nginx 默认是不能把这台服务器踢出 upstream 负载集群的,所以还会有请求转发到后端的这台服务器上面,这样势必造成网站访问故障 注&#x…...
uniapp 多轴图,双轴图,指定哪几个数据在哪个轴上显示
这里使用的在这里导入, 秋云 ucharts echarts 高性能跨全端图表组件 - DCloud 插件市场 这里我封装成一个组件,自适应的,可以直接复制到自己的项目中 <template><qiun-data-charts type"mix":opts"opts":cha…...
Kotlin 协程 supervisorScope {} 运行崩溃解决
前言 简单介绍supervisorScope函数,它用于创建一个使用了 SupervisorJob 的 coroutineScope, 该作用域的特点:抛出的异常,不会 连锁取消 同级协程和父协程。 看过很多 supervisorScope {} 文档的使用,我照抄一摸一样…...
【Spring 篇】JdbcTemplate:轻松驾驭数据库的魔法工具
欢迎来到数据库的奇妙世界,在这里,我们将一同揭开Spring框架中JdbcTemplate的神秘面纱。JdbcTemplate是Spring提供的一个简化数据库操作的工具,它为我们提供了一种轻松驾驭数据库的魔法。本篇博客将详细解释JdbcTemplate的基本使用࿰…...
Web开发SpringBoot SpringMVC Spring的学习笔记(包含开发常用工具类)
开发框架学习笔记 一.Spring SpringMVC SpringBoot三者的联系SpringMVC工作原理 二.SpringBoot的学习2.1 注解2.1.1 SpringBoot的核心注解2.1.2 配置导入注解(简化Spring配置写XML的痛苦)Configuration和Bean(人为注册Spring 的 Bean)Import(补)ImportResource(补)AutowiredQua…...
微服务下的SpringSecurity认证端
从三板斧开始微服务下的SpringSecurity开始 一、引入组件包 <dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-oauth2</artifactId> </dependency> 二、创建适配器 AuthorizationServerConfig…...
苹果电脑菜单栏应用管理软件Bartender 4 mac软件特点
Bartender mac是一款可以帮助用户更好地管理和组织菜单栏图标的 macOS 软件。它允许用户隐藏和重新排列菜单栏图标,从而减少混乱和杂乱。 Bartender mac软件特点 菜单栏图标隐藏:Bartender 允许用户隐藏菜单栏图标,只在需要时显示。这样可以…...
笙默考试管理系统-MyExamTest----codemirror(65)
笙默考试管理系统-MyExamTest----codemirror(65) 目录 一、 笙默考试管理系统-MyExamTest----codemirror 二、 笙默考试管理系统-MyExamTest----codemirror 三、 笙默考试管理系统-MyExamTest----codemirror 四、 笙默考试管理系统-MyExamTest---…...
git在本地创建dev分支并和远程的dev分支关联起来
文章目录 git在本地创建dev分支并和远程的dev分支关联起来1. 使用git命令2. 使用idea2.1 先删除上面建的本地分支dev2.2 通过idea建dev分支并和远程dev分支关联 3. 查看本地分支和远程分支的关系 git在本地创建dev分支并和远程的dev分支关联起来 1. 使用git命令 git checkout…...
【C++】深入了解构造函数之初始化列表
目录 一、再谈构造函数 1、引入 1)构造函数体赋值 2)不同成员变量赋值 2、初始化列表 一、再谈构造函数 1、引入 1)构造函数体赋值 在创建对象时,编译器通过调用构造函数,给对象中各个成员变量一个合适的初始值…...
差分--差分数组快速计算L到R值相加后的数组
目录 差分:思路代码: 原题链接 差分: 输入一个长度为 n 的整数序列。 接下来输入 m 个操作,每个操作包含三个整数 l,r,c ,表示将序列中 [l,r] 之间的每个数加上 c 。 请你输出进行完所有操作后的序列。 输入格式 第…...
深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...
css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
浅谈不同二分算法的查找情况
二分算法原理比较简单,但是实际的算法模板却有很多,这一切都源于二分查找问题中的复杂情况和二分算法的边界处理,以下是博主对一些二分算法查找的情况分析。 需要说明的是,以下二分算法都是基于有序序列为升序有序的情况…...
.Net Framework 4/C# 关键字(非常用,持续更新...)
一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...
C# 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...
佰力博科技与您探讨热释电测量的几种方法
热释电的测量主要涉及热释电系数的测定,这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中,积分电荷法最为常用,其原理是通过测量在电容器上积累的热释电电荷,从而确定热释电系数…...
9-Oracle 23 ai Vector Search 特性 知识准备
很多小伙伴是不是参加了 免费认证课程(限时至2025/5/15) Oracle AI Vector Search 1Z0-184-25考试,都顺利拿到certified了没。 各行各业的AI 大模型的到来,传统的数据库中的SQL还能不能打,结构化和非结构的话数据如何和…...
