当前位置: 首页 > news >正文

机器学习 -- 余弦相似度

场景

我有一个 页面如下(随便找的):

我的需求是拿到所有回答的链接,在这里插入图片描述
再或者我在找房子网上,爬到所有的房产信息,我们并不想做过多的处理,我只要告诉程序,请帮我爬一个类似 xxx 相似度为0.5的就可以了,然后我自会写一小段代码去给数据清洗,这就免去了每次不同网站写不同的一套脚本的痛苦。这里就用到了 余弦相似度

余弦相似度

余弦相似度,又称为余弦相似性,是通过测量两个向量的夹角的余弦值来度量它们之间的相似性。两个方向完全相同的向量的余弦相似度为1,而两个彼此相对的向量的相似度为-1。 注意,它们的大小并不重要,因为这是方向的度量。

余弦定理:
在这里插入图片描述
所以余弦的计算公式如下:
在这里插入图片描述
有向量 a,b 他们的余弦值的公式是:
在这里插入图片描述
这个可能和k近邻算法听起来有些相似。但是也有不同

余弦相似度通常用于计算两个向量间的相似度,尤其常见于文本处理中。它通过测量两个向量间夹角的余弦值来判断它们的相似度。而k近邻算法是一种基于实例的学习或非泛化学习,它不试图构造一个通用内部模型,而是简单地存储实例数据。在分类时,新的数据点会被分配到它最近邻的类别。

所以余弦相似度更适合比较文本的相似程度,而k近邻算法常用于分类问题

优缺点

余弦相似度是一种测量两个向量在方向上的相似度的度量。它广泛用于文本分析,特别是在计算文档或文本片段之间的相似性时。

优点

1.不受大小影响:余弦相似度仅考虑向量间的角度,而不受其大小(即向量的长度或幅度)的影响,这使得它特别适用于文本数据,其中词频(长度)可能不是很重要。

2.效率较高:在稀疏数据集(如文本数据)上计算余弦相似度通常比其他相似度测量更高效。
适合高维数据:它适用于高维数据集,例如文本数据,其中每个维度代表一个不同的单词。

缺点

1.不考虑非共有特征:仅考虑两个向量共有的特征(即同时在两个向量中出现的元素),这可能会忽略某些重要信息。

2.对数据分布敏感:在某些情况下,数据的分布会影响余弦相似度的结果,尤其是当两个向量的长度相差悬殊时。

业务应用

1.获取html文本内容,我有两个html文件(获取html很容易,自动化和http请求都可以做到,但是要注意robot.txt协议),h6是一个整体的大html ,h7是案例html,我要拿的是 所有回答的链接,所以h7就是随机一个链接的html

file_path = 'D:/herche_ai/h6.html'  
with open(file_path, 'r', encoding='utf-8') as file:html_content = file.read()file_path = 'D:/herche_ai/h7.html' 
with open(file_path, 'r', encoding='utf-8') as file:target_html = file.read()
  1. 构建特征向量,我们利用BeautifulSoup将所有元素都趴下来,随后我们将其转为字符串表示
def build_feature_vector(html):"""构建特征向量"""soup = BeautifulSoup(html, 'html.parser')elements = soup.find_all()elements_str = [element_to_string(el) for el in elements]return elements_str, elements
def element_to_string(element):"""将元素转换为字符串表示"""return f"{element.name} {' '.join([f'{k}={v}' for k, v in element.attrs.items()])}"

3.构建源html和目标html的特征

# 构建原始html特征向量html_elements_str, html_elements = build_feature_vector(html)
# 构建目标html特征向量target_elements_str, _ = build_feature_vector(target_html)

4.处理文本

    vectorizer = CountVectorizer().fit(html_elements_str + target_elements_str)

CountVectorizer主要用于文本处理,它通过计数每个单词在文本中出现的频率来将文本转换为数值向量。这个过程可以分为以下几个步骤:
分词:将每个文本(在这种情况下是HTML元素的字符串表示)分割成单词或标记。
构建词汇表:从所有文本中提取出所有不同的单词,构建一个词汇表。
计数:对于每个文本,计算词汇表中每个单词的出现次数。
转换为向量:每个文本最终被转换为一个向量,向量的每个元素代表词汇表中对应单词的出现次数。

5.将两个html文本转为向量数值

 html_vec = vectorizer.transform(html_elements_str)target_vec = vectorizer.transform(target_elements_str)

6.比较相似度并且拿出相似度大于0.5的元素

similarities = cosine_similarity(target_vec, html_vec)similar_elements = []for index, similarity in enumerate(similarities[0]):if similarity >= threshold:similar_elements.append(html_elements[index])return similar_elements

7.顺利拿到h6 html中所有和h7相似的元素

结束

余弦相似度应用爬虫场景结束

相关文章:

机器学习 -- 余弦相似度

场景 我有一个 页面如下(随便找的): 我的需求是拿到所有回答的链接, 再或者我在找房子网上,爬到所有的房产信息,我们并不想做过多的处理,我只要告诉程序,请帮我爬一个类似 xxx 相似…...

LeNet-5(fashion-mnist)

文章目录 前言LeNet模型训练 前言 LeNet是最早发布的卷积神经网络之一。该模型被提出用于识别图像中的手写数字。 LeNet LeNet-5由以下两个部分组成 卷积编码器(2)全连接层(3) 卷积块由一个卷积层、一个sigmoid激活函数和一个…...

Unity中URP下开启和使用深度图

文章目录 前言一、在Unity中打开URP下的深度图二、在Shader中开启深度图1、使用不透明渲染队列才可以使用深度图2、半透明渲染队列深度图就会关闭 三、URP深度图 和 BRP深度图的区别四、在Shader中,使用深度图1、定义纹理和采样器2、在片元着色器对深度图采样并且输…...

类似东郊到家上门预约系统需要具备哪些功能,预约系统应该怎么做

随着上门服务需求的持续增长,各类APP小程序应运而生。吸引了无数商家投资者,纷纷想要开发一款类似于"东郊到家"这样的上门服务软件。要想成功,这样的软件需具备以下核心功能: 1. 快速注册与登录:用户能通过手…...

鸿蒙APP和Android的区别

鸿蒙(HarmonyOS)和Android是两个不同的操作系统,它们有一些区别,包括架构、开发者支持、应用生态和一些设计理念。以下是鸿蒙APP和Android APP之间的一些主要区别,希望对大家有所帮助。北京木奇移动技术有限公司&#…...

给Flutter + FireBase 增加 badge 徽章,App启动器 通知红点。

在此之前需要配置好 firebase 在flutter 在项目中。(已经配置好的可以忽略此提示) Firebase 配置教程:flutter firebase 云消息通知教程 (android-安卓、ios-苹果)_flutter firebase_messaging ios环境配置-CSDN博客 由于firebase 提供的消息…...

2024年中国杭州|网络安全技能大赛(CTF)正式开启竞赛报名

前言 一、CTF简介 CTF(Capture The Flag)中文一般译作夺旗赛,在网络安全领域中指的是网络安全技术人员之间进行技术竞技的一种比赛形式。CTF起源于1996年DEFCON全球黑客大会,以代替之前黑客们通过互相发起真实攻击进行技术比拼的…...

112.Qt中的窗口类

我们在通过Qt向导窗口基于窗口的应用程序的项目过程中倒数第二步让我们选择跟随项目创建的第一个窗口的基类, 下拉菜单中有三个选项, 分别为: QMainWindow、QDialog、QWidget如下图: 常用的窗口类有3个 在创建Qt窗口的时候, 需要让自己的窗口类继承上述三个窗口类的…...

如何设置电脑桌面提醒,电脑笔记软件哪个好?

对于大多数上班族来说,每天要完成的待办事项实在太多了,如果不能及时去处理,很容易因为各种因素导致忘记,从而给自己带来不少麻烦。所以,我们往往会借助一些提醒类的软件将各项任务逐一记录下来,然后设置上…...

C# HttpClient Get Post简单封装

文章目录 前言封装好的代码测试接口测试代码 前言 微软官方有Get和Post请求&#xff0c;我把他简单化处理一下 封装好的代码 public class MyHttpHelper{private string baseUrl;/// <summary>/// 基础Api/// </summary>public string BaseUrl{get{return baseUr…...

创建网格(Grid/GridItem)

目录 1、概述 2、布局与约束 3、设置排列方式 3.1设置行列数量与占比 3.2、设置子组件所占行列数 3.3、设置主轴方向 3.4、在网格布局中显示数据 3.5、设置行列间距 4、构建可滚动的网格布局 5、实现简单的日历功能 6、性能优化 1、概述 网格布局是由“行”和“列”分…...

思科路由器忘记密码怎么重置

断电重启路由器&#xff0c;在开机过程中按下CtrlPause/break&#xff0c;或者只按下Pause/break&#xff08;没有测试&#xff09;&#xff0c;在PT&#xff08;Cisco Packet Tracert&#xff09;中则需要按CtrlC。路由器会进入rommon >模式。 切换到0x2142模式&#xff0…...

JVM基础(2)——JVM内存模型

一、简介 JVM会加载类到内存中&#xff0c;所以 JVM 中必然会有一块内存区域来存放我们写的那些类。Java中有类对象、普通对象、本地变量、方法信息等等各种对象信息&#xff0c;所以JVM会对内存区域进行划分&#xff1a; JDK1.8及以后&#xff0c;上图中的方法区变成了Metasp…...

使用 Process Explorer 和 Windbg 排查软件线程堵塞问题

目录 1、问题说明 2、线程堵塞的可能原因分析 3、使用Windbg和Process Explorer确定线程中发生了死循环 4、根据Windbg中显示的函数调用堆栈去查看源码&#xff0c;找到问题 4.1、在Windbg定位发生死循环的函数的方法 4.2、在Windbg中查看变量的值去辅助分析 4.3、是循环…...

做科技类的展台3d模型用什么材质比较好---模大狮模型网

对于科技类展台3D模型&#xff0c;以下是几种常用的材质选择&#xff1a; 金属材质&#xff1a;金属材质常用于科技展台的现代感设计&#xff0c;如不锈钢、铝合金或镀铬材质。金属材质可以赋予展台一个科技感和高档感&#xff0c;同时还可以反射光线&#xff0c;增加模型的真实…...

EasyExcel简单实例(未完待续)

EasyExcel简单实例 准备工作场景一&#xff1a;读取 Student 表需求1&#xff1a;简单读取需求2&#xff1a;读取到异常信息时不中断需求3&#xff1a;读取所有的sheet工作表需求4&#xff1a;读取指定的sheet工作表需求5&#xff1a;从指定的行开始读取 场景二&#xff1a;写入…...

ROS2学习笔记一:安装及测试

目录 前言 1 ROS2安装与卸载 1.1 安装虚拟机 1.2 ROS2 humble安装 2 ROS2测试 2.1 topic测试 2.2 小海龟测试 2.3 RQT可视化 2.4 占用空间 前言 ROS2的前身是ROS&#xff0c;ROS即机器人操作系统&#xff08;Robot Operating System&#xff09;,ROS为了“提高机器人…...

Xcode14.3.1真机调试iOS17的方法

Hello&#xff0c;大家好我是咕噜铁蛋&#xff01;Xcode 是苹果官方开发工具&#xff0c;它提供了完整的开发环境和工具集&#xff0c;支持开发 iOS、macOS、watchOS 和 tvOS 应用程序。对于 iOS 开发者来说&#xff0c;Xcode 是必备的工具之一。而随着 iOS 系统的不断更新和升…...

主流大语言模型从预训练到微调的技术原理

引言 本文设计的内容主要包含以下几个方面&#xff1a; 比较 LLaMA、ChatGLM、Falcon 等大语言模型的细节&#xff1a;tokenizer、位置编码、Layer Normalization、激活函数等。大语言模型的分布式训练技术&#xff1a;数据并行、张量模型并行、流水线并行、3D 并行、零冗余优…...

Linux中vim查看文件某内容

一、编辑文件命令 [rootyinheqilin ~]# vim test.txt 1&#xff0c;在编辑的文件中连续按2次键盘的【g】键&#xff0c;光标会移动到文档开头第一行 2&#xff0c;输入一个大写 G&#xff0c;光标会跳转到文件的最后一行第一列&#xff08;末行) 二、查看文件内容命令 gre…...

Spring Boot面试题精选汇总

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案&#xff0c;允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

3-11单元格区域边界定位(End属性)学习笔记

返回一个Range 对象&#xff0c;只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意&#xff1a;它移动的位置必须是相连的有内容的单元格…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...

Go语言多线程问题

打印零与奇偶数&#xff08;leetcode 1116&#xff09; 方法1&#xff1a;使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...

数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !

我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...