100个GEO基因表达芯片或转录组数据处理之GSE126848(003)
写在前边
虽然现在是高通量测序的时代,但是GEO、ArrayExpress等数据库储存并公开大量的基因表达芯片数据,还是会有大量的需求去处理芯片数据,并且建模或验证自己所研究基因的表达情况,芯片数据的处理也可能是大部分刚学生信的道友入门R语言数据处理的第一次实战,因此准备更新100个基因表达芯片或转录组高通量数据的处理。
数据信息检索
可以看到GSE126848是转录组高通量测序数据,因此可以使用GEOquery包下载数据临床信息,并且手动下载表达矩阵并整理


使用GEOquery包下载数据
using(tidyverse, GEOquery, magrittr, data.table, AnnoProbe, clusterProfiler, org.Hs.eg.db, org.Mm.eg.db)
注:using是我写的函数,作用是一次性加载多个R包,不用写双引号,并且不在屏幕上打印包的加载信息,可以参考之前的推文using的定义;函数名字using是在模仿Julia语言中的包加载函数
geo_accession <- "GSE126848"
gset <- GEOquery::getGEO(geo_accession, destdir = "./", AnnotGPL = F, getGPL = F)
eSet <- gset[[1]]
gpl <- eSet@annotation
处理表型数据
这部分是很关键的,可以筛选一下分组表型信息,只保留自己需要的样本,在这里只保留disease:ch1中healthy和NASH的样本,作为后续分析的样本(根据自己的研究目的筛选符合要求的样本)
pdata <- pData(eSet)
| geo_accession | description | disease:ch1 | gender:ch1 | tissue:ch1 |
|---|---|---|---|---|
| GSM3615293 | 2683 | NAFLD | Male | Liver |
| GSM3615294 | 2685 | NAFLD | Male | Liver |
| GSM3615295 | 2687 | NAFLD | Male | Liver |
| GSM3615296 | 2689 | NAFLD | Female | Liver |
| GSM3615297 | 2691 | NAFLD | Female | Liver |
| GSM3615298 | 2693 | NAFLD | Male | Liver |
pdata %<>%dplyr::mutate(Sample = geo_accession,Group = case_when(`diagnosis:ch1` == "HC" ~ "Control", `diagnosis:ch1` == "NASH" ~ "Case", TRUE ~ NA),Age = `age (y):ch1`,Sex = str_to_title(`gender:ch1`),Stage = `fibrosis (stage):ch1`) %>%dplyr::filter(!is.na(Group)) %>%dplyr::select(Sample, Group, Age, Sex)
fwrite(pdata, file = str_glue("{geo_accession}_pdata.csv"))
处理表达谱数据
原始数据为Count值,需要标准化为TPM,并且基因名是Ensembl ID转换为Symbol基因名,可以使用到我自己写的几个函数genekit、bioquest;有需要可以联系我的公众号@恩喜玛生物,加入交流群
import pandas as pd
import genekit as gk
import bioquest as bq
fdata = pd.read_csv("GSE126848_Gene_counts_raw.txt.gz",sep='\t',index_col=0)
pdata = pd.read_csv("GSE126848_pdata.csv",index_col=0)
pdata.drop(columns=["Sample2"]).to_csv("GSE126848_pdata.csv")
fdata与pdata样本名统一,这里使用了Python的字符串格式化方法
fdata = fdata.loc[:,["{0:0>4}".format(x) for x in pdata.Sample2]]
fdata.columns = pdata.index.to_list()
保存一份原始Count数据信息
fdata.to_csv("GSE126848_count.csv.gz")
Count 转 TPM
fdata = gk.countto(fdata, towhat='tpm', geneid='Ensembl', species='Human')
Ensembl ID转换为Symbol基因名
fdata=gk.geneIDconverter(frame=fdata,from_id='Ensembl',to_id='Symbol',keep_from=False,gene_type=False,)
去重复
根据每个基因表达量的中位数去除重复的基因
fdata=bq.tl.unique_exprs(fdata)
保存TPM基因表达量数据
fdata.to_csv("GSE126848_tpm.csv.gz")

相关文章:
100个GEO基因表达芯片或转录组数据处理之GSE126848(003)
写在前边 虽然现在是高通量测序的时代,但是GEO、ArrayExpress等数据库储存并公开大量的基因表达芯片数据,还是会有大量的需求去处理芯片数据,并且建模或验证自己所研究基因的表达情况,芯片数据的处理也可能是大部分刚学生信的道友…...
1. Presto基础
该笔记来源于网络,仅用于搜索学习,不保证所有内容正确。文章目录 一、presto基础操作二、时间函数0、当前日期/当前时间1、转时间戳1)字符串转时间戳 (推荐)2)按照format指定的格式,将字符串str…...
ChatGPT可以帮你做什么?
学习 利用ChatGPT学习有很多,比如:语言学习、编程学习、论文学习拆解、推荐学习资源等,使用方法大同小异,这里以语言学习为例。 在开始前先给GPT充分的信息:(举例) 【角色】充当一名有丰富经验…...
20240111在ubuntu20.04.6下解压缩RAR格式的压缩包
20240111在ubuntu20.04.6下解压缩RAR格式的压缩包 2024/1/11 18:25 百度搜搜:ubuntu rar文件怎么解压 rootrootrootroot-X99-Turbo:~/temp$ ll total 2916 drwx------ 3 rootroot rootroot 4096 1月 11 18:28 ./ drwxr-xr-x 25 rootroot rootroot 4096 1月…...
YOLOv5改进 | 检测头篇 | ASFFHead自适应空间特征融合检测头(全网首发)
一、本文介绍 本文给大家带来的改进机制是利用ASFF改进YOLOv5的检测头形成新的检测头Detect_ASFF,其主要创新是引入了一种自适应的空间特征融合方式,有效地过滤掉冲突信息,从而增强了尺度不变性。经过我的实验验证,修改后的检测头在所有的检测目标上均有大幅度的涨点效果,…...
第十三章 接口测试(笔记)
一、接口测试分类 内部接口:测试被测系统各个子模块之间的接口,或者被测系统提供给内部系统使用的接口 外部接口: 1.被测系统调用外部的接口 2.系统对外提供的接口 接口测试重点:检查接口参数传递的正确性,接口功能的正确性,输出结果的正确性,以及对各种异常情况的容错…...
Github搭建图床 github搭建静态资源库 免费CDN加速 github搭建图床使用 jsdelivr CDN免费加速访问
Github搭建图床 github搭建静态资源库 免费CDN加速 github搭建图床使用 jsdelivr CDN免费加速访问 前言1、创建仓库2、开启 gh-pages页面功能3、访问测试 前言 写博客文章时,图片的上传和存放是一个问题,使用小众第三方图床,怕不稳定和倒闭&…...
Airtest-Selenium实操小课②:刷B站视频
1. 前言 上一课我们讲到用Airtest-Selenium爬取网站上我们需要的信息数据,还没看的同学可以戳这里看看~ 那么今天的推文,我们就来说说看,怎么实现看b站、刷b站的日常操作,包括点击暂停,发弹幕,点赞&#…...
Linux chmod命令详解
Linux chmod(英文全拼:change mode)命令是控制用户对文件的权限的命令 Linux/Unix 的文件调用权限分为三级 : 文件所有者(Owner)、用户组(Group)、其它用户(Other Users)…...
求幸存数之和 - 华为OD统一考试
OD统一考试(C卷) 分值: 100分 题解: Java / Python / C++ 题目描述 给一个正整数列nums,一个跳数jump,及幸存数量left。运算过程为:从索引为0的位置开始向后跳,中间跳过 J 个数字,命中索引为 J+1 的数字,该数被敲出,并从该点起跳,以此类推,直到幸存left个数为止。…...
【QML COOK】- 008-自定义属性
前面介绍了用C定义QML类型,通常在使用Qt Quick开发项目时,C定义后端数据类型,前端则完全使用QML实现。而QML类型或Qt Quick中的类型时不免需要为对象增加一些属性,本篇就来介绍如何自定义属性。 1. 创建项目,并编辑Ma…...
前端页面优化做的工作
1.分析模块占用空间 new (require(webpack-bundle-analyzer).BundleAnalyzerPlugin)() 2.使用谷歌浏览器中的layers,看下有没有影响性能的模块,或者应该销毁没销毁的 3.由于我们页面中含有很大的序列帧动画,所以会导致页面性能低࿰…...
Spark六:Spark 底层执行原理SparkContext、DAG、TaskScheduler
Spark底层执行原理 学习Spark运行流程 学习链接:https://mp.weixin.qq.com/s/caCk3mM5iXy0FaXCLkDwYQ 一、Spark运行流程 流程: SparkContext向管理器注册并向资源管理器申请运行Executor资源管理器分配Executor,然后资源管理器启动Execut…...
关于鸿蒙的笔记整理
提示:有使用过 vue 或 react 的小伙伴更容易理解 知识点强调: ArkTS所有内容都不支持深层数据更新 UI渲染 文章目录 一、关于样式1 . 默认单位 vp2 . 写公共样式 二 、 加载图片三 、 自定义构建函数 Builder四、构建函数-BuilderParam 传递UI五 、 父子…...
【漏洞复现】先锋WEB燃气收费系统文件上传漏洞 1day
漏洞描述 /AjaxService/Upload.aspx 存在任意文件上传漏洞 免责声明 技术文章仅供参考,任何个人和组织使用网络应当遵守宪法法律,遵守公共秩序,尊重社会公德,不得利用网络从事危害国家安全、荣誉和利益,未经授权请勿利用文章中的技术资料对任何计算机系统进行入侵操作…...
MYSQL篇--锁机制高频面试题
Mysql锁机制 1对mysql的锁有了解吗? 首先我们要知道,mysql的锁 其实是为了解决在并发事务时所导致的数据不一致问题的一种处理机制,也就是说 在事务的隔离级别实现中,就需要利用锁来解决幻读问题 然后我们可以聊到锁的分类 按锁…...
创建一个郭德纲相声GPTs
前言 在这篇文章中,我将分享如何利用ChatGPT 4.0辅助论文写作的技巧,并根据网上的资料和最新的研究补充更多好用的咒语技巧。 GPT4的官方售价是每月20美元,很多人并不是天天用GPT,只是偶尔用一下。 如果调用官方的GPT4接口&…...
靶机实战(10):OSCP备考之VulnHub Tre 1
靶机官网:Tre: 1[1] 实战思路: 一、主机发现二、端口发现(服务、组件、版本)三、漏洞发现(获取权限) 8082端口/HTTP服务 组件漏洞URL漏洞(目录、文件)80端口/HTTP服务 组件漏洞URL漏…...
在windows11系统上利用docker搭建linux记录
我的windows11系统上,之前已经安装好了window版本的docker,没有安装的小伙伴需要去安装一下。 下面直接记录安装linux的步骤: 一、创建linux容器 1、拉取镜像 docker pull ubuntu 2、查看镜像 docker images 3、创建容器 docker run --…...
swift对接环信sdk
准备 熟练objective-c语言 有一台mac电脑,并安装了xcode 和 cocoapods 内容篇幅较长,需要内心平和耐心看下去,务必戒躁. 学习目的 手把手教大家如何在iOS应用中集成环信IM 明确表示,内容一定全面,没有任何丢失,只要沉得住气,耐得下心,3小时即可搞定. 若经常阅读文档以及语…...
Java 8 Stream API 入门到实践详解
一、告别 for 循环! 传统痛点: Java 8 之前,集合操作离不开冗长的 for 循环和匿名类。例如,过滤列表中的偶数: List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...
基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...
什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...
【算法训练营Day07】字符串part1
文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接:344. 反转字符串 双指针法,两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
Angular微前端架构:Module Federation + ngx-build-plus (Webpack)
以下是一个完整的 Angular 微前端示例,其中使用的是 Module Federation 和 npx-build-plus 实现了主应用(Shell)与子应用(Remote)的集成。 🛠️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...
iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈
在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...
力扣热题100 k个一组反转链表题解
题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...
HubSpot推出与ChatGPT的深度集成引发兴奋与担忧
上周三,HubSpot宣布已构建与ChatGPT的深度集成,这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋,但同时也存在一些关于数据安全的担忧。 许多网络声音声称,这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...
