当前位置: 首页 > news >正文

Pytorch 反向传播 计算图被修改的报错

先看看报错的内容

RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.FloatTensor [5, 1]], which is output 0 of AsStridedBackward0, is at version 2; expected version 1 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).

报错中说,一个需要梯度计算的变量已经被原地修改了,这引发了报错。

torch.set_grad_enabled(True)

然后我使用上述语句开启了梯度跟踪,发现问题出在我的标签计算函数:

def get_label(net, X):return net(X).reshape((-1, 1))

为什么会出错呢?在这种情况下,由于 label 是从网络输出直接计算得到的,它与网络的计算图相连接。如果在 label 上进行了原地操作(上述的修改形状操作),就可能破坏计算图,使其不可导或其他,总之是导致反向传播时无法正确计算梯度,从而引发报错。

那怎么解决这个问题?将该结果与计算图进行分离就行了,此刻如果再进行反向传播,梯度就不会传播到此处。修改后,代码如下;

def get_label(net, X):return net(X).detach().reshape((-1, 1))

detach()函数的作用是将数据和计算图分离开来,得到数据部分,与计算图再无瓜葛。

举一个更形象的例子,看下面的代码:

label = net(X)  # 计算标签
# 对 label 或 label 的某个部分进行了原地操作,比如:
# label[0, 0] = label[0, 0] * 2
# 或
# label += 1
loss = Loss(label, y)  # 计算损失

在这个例子中,label由第一条语句前向传播得到,是直接与网络的输出连在一起,后面我却对label的值进行了手动修改。

这些操作可能导致计算图的结构不完整或不可导,从而影响反向传播的计算。为了避免这样的问题,一般建议避免在计算标签或损失时对张量进行原地操作。如果需要修改张量的值,最好创建一个新的张量,而不是直接在原有张量上进行修改。

下面是我的整个程序,大家也可以调试代码来理解其中的含义:

import torch.nn as nn
import matplotlib.pyplot as plt
import torch
from torch.utils import data
def get_label(net, X):#计算标签,计算完后必须要使用detach()分离计算图,否则代码将报计算图被修改的错误return net(X).detach().reshape((-1, 1))def train(net, trainer, Loss, train_data, train_label, epochs, batch_size):#将训练数据和标签捆在一起,便于后面一起便利data_iter = data.DataLoader(list(zip(train_data, train_label)), batch_size=batch_size)#用来存储数据的变化值,前者为训练轮次,后者为每一轮训练平均损失draw_x, draw_y = [], []for epoch in range(epochs):#每次处理一个批次的数据for X, y in data_iter:trainer.zero_grad()  # 清除梯度pre_y = net(X)  # 前向传播loss = Loss(pre_y, y)  # 计算损失loss.backward()  # 反向传播,计算梯度trainer.step()  # 更新权重,进行优化#添加绘图需要的数据draw_x.append(epoch)draw_y.append(torch.mean(Loss(net(train_data),train_label)).data)#设置绘图参数plt.figure(figsize=(5, 4), dpi=150)#设置图像大小和分辨率plt.plot(draw_x, draw_y, label='train_loss')#设置要绘制的数据,被给出图例plt.xlabel('epoch')#设置X轴标题plt.ylabel('loss')#设置y轴标题plt.legend()#显示图例#显示最终图像plt.show()def test(net, Loss, test_data, test_label):loss_sum = torch.zeros_like(test_label)data_iter = data.DataLoader(list(zip(test_data, test_label)), batch_size=batch_size, shuffle=False)for X, y in data_iter:pre_y = net(X)  # 前向传播loss = Loss(pre_y, y)  # 计算损失loss_sum += loss  # 累加损失return torch.sum(loss_sum) / len(loss_sum)  # 返回平均损失def init_weight(m):if type(m) == nn.Linear:#权重使用何凯明正态初始化方法进行初始化nn.init.kaiming_normal_(m.weight)#偏置使用0偏置nn.init.zeros_(m.bias)lr = 0.01  # 学习率
epochs = 100  # 训练轮数
batch_size = 5  # 批大小
shared = nn.Linear(5, 5)  # 共享层
net = nn.Sequential(nn.Linear(10, 5), nn.ReLU(),  # 输入层到隐藏层1的线性层,ReLU激活函数shared, nn.ReLU(),  # 共享层,ReLU激活函数shared, nn.ReLU(),  # 共享层,ReLU激活函数nn.Linear(5, 1))  # 从隐藏层到输出层的线性层,无激活函数(线性回归)#显示真实参数(我们的标签就是用这个参数跑出来的),这也是我们最终需要拟合的参数
for name, param in net.named_parameters():print(name, param)#获取随机数作为样本
X = torch.randn((200, 10))
# 通过网络得到真实标签
True_label = get_label(net, X)
#一开始自动随机生成了参数已经被我当作真实参数了,此刻我需要另重新初始化参数
net.apply(init_weight)
#获取训练器
trainer = torch.optim.SGD(net.parameters(), lr=lr)
#获取损失函数
Loss = nn.MSELoss()  # 定义损失函数,使用均方误差。#开始训练模型发
train(net, trainer, Loss, X[:50], True_label[:50], epochs, batch_size=batch_size)
#打印测试损失
print(f'测试损失{test(net, Loss, X[50:], True_label[50:])}')

相关文章:

Pytorch 反向传播 计算图被修改的报错

先看看报错的内容 RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.FloatTensor [5, 1]], which is output 0 of AsStridedBackward0, is at version 2; expected version 1 instead. Hint: enable an…...

android studio设置gradle和gradle JDK版本

文章目录 1.gradle JDK版本2.gradle版本 1.gradle JDK版本 file -> project structure -> SDK Location -> Gradle Settings -> Gradle JDK -> Download JDK 2.gradle版本 file -> project structure -> Project...

Android 15即将到来,或将推出5大新功能特性

Android15 OneUI电池优化 三星最近完成了对其所有设备的稳定版 One UI 6.0 更新的推出,引起了用户的极大兴奋。据新出现的互联网统计数据显示,即将发布的基于 Android 15 的 One UI 7 将通过优化电池和功耗来重新定义用户体验,这是一项具有突…...

sqlalchemy 事务自动控制(类java aop)

最近使用它交互数据库,想实现类似java aop那种自动事务控制,不用手动commit或者rollback。我是用的是flaskdenpendency-injecter 这是我的db的配置类,里面会初始化一些session配置,里面比较重要的是把autocommit和autoflush关闭了…...

vue2-手写轮播图

轮播图5长展示&#xff0c;点击指示器向右移动一个图片&#xff0c;每隔2秒移动一张照片&#xff01; <template><div class"top-app"><div class"carousel-container"><div class"carousel" ref"carousel">&…...

Google I/O大会:Android 13

3个体验升级的方向 以智能手机为场景核心、 扩大智能终端的应用边界以及实现多设备间更好地协同。具体到系统体验层&#xff0c;安卓13将支持图标颜色随主题更换、为不同应用设定使用的语言、新的媒体中心界面等等&#xff0c;同时谷歌也推出了自家的钱包应用&#xff08;Goog…...

VUE指令(一)

vue会根据不同的指令&#xff0c;针对不同的标签实现不同的功能。指令是带有 v- 前缀的特殊标签属性。指令的职责是&#xff0c;当表达式的值改变时&#xff0c;将其产生的连带影响&#xff0c;响应式地作用于 DOM。 1、v-text&#xff1a;设置元素的文本内容&#xff0c;不会解…...

微信小程序开发学习笔记《7》全局配置以及小程序窗口

微信小程序开发学习笔记《7》全局配置以及小程序窗口 博主正在学习微信小程序开发&#xff0c;希望记录自己学习过程同时与广大网友共同学习讨论。全局配置官方文档 一、全局配置文件及常用的配置项 小程序根目录下的app.json 文件是小程序的全局配置文件。 常用的配置项如…...

Vue、uniApp、微信小程序、Html5等实现数缓存

此文章带你实现前端缓存&#xff0c;利用时间戳封装一个类似于Redis可以添加过期时间的缓存工具 不仅可以实现对缓存数据设置过期时间&#xff0c;还可以自定义是否需要对缓存数据进行加密处理 工具介绍说明 对缓存数据进行非对称加密处理 对必要数据进行缓存&#xff0c;并…...

如何将ArcGIS工程文件迁移到ArcGIS Pro内

当你刚接触ArcGIS Pro的时候&#xff0c;尝试新建一个工程文件会发现工程文件的后缀已经改变&#xff0c;那么以前在ArcGIS内辛苦制作的工程文件是否就不能在ArcGIS Pro内使用了&#xff0c;答案是否定的&#xff0c;对此Esri也给出了解决方案&#xff0c;这里为大家介绍一下迁…...

Jenkins基础篇--添加用户和用户权限设置

添加用户 点击系统管理&#xff0c;点击管理用户&#xff0c;然后点击创建用户&#xff08;Create User&#xff09; 用户权限管理 点击系统管理&#xff0c;点击全局安全配置&#xff0c;找到授权策略&#xff0c;选择安全矩阵&#xff0c;配置好用户权限后&#xff0c;点击…...

C语言基础内容(七)——第08章_C语言常用函数

文章目录 第08章_C语言常用函数本章专题脉络1、字符串相关函数1.1 字符串的表示方式1.2 两种方式的区别1.2 字符串常用函数strlen()strcpy()strncpy()strcat()strncat()strcmp()strlwr()/strupr()1.3 基本数据类型和字符串的转换基本数据类型 -> 字符串字符串 -> 基本数据…...

CRM系统针对销售管理有哪些功能?如何帮助销售效率增长?

从长远来看&#xff0c;有效的CRM管理系统可以帮助您的企业达到甚至超过收入目标。现代大多数企业都依靠CRM系统来管理其销售周期并增加收入。但是&#xff0c;当大多数人提到CRM时&#xff0c;他们指的是使能够改善业务关系并轻松管理不断团队的软件或工具。合格的CRM系统能够…...

基于Pixhawk和ROS搭建自主无人车(一):底盘控制篇

参考 ArduPilot Development超维空间科技乐迪MiniPix车船使用说明书 1. 硬件篇 1.1 底盘构成一览 1.2 底盘接线示意 2. 软件篇 2.1 APM 固件下载 pixhawk 是硬件平台&#xff0c;PX4 是 pixhawk 的原生固件&#xff0c;APM&#xff08;Ardupilot Mega&#xff09;是硬件平台…...

部署 Spring Boot 应用中文文档

本文为官方文档直译版本。原文链接 部署 Spring Boot 应用中文文档 引言部署到云Cloud Foundry与服务绑定 KubernetesKubernetes 容器生命周期 HerokuOpenShift亚马逊网络服务&#xff08;AWS&#xff09;AWS Elastic Beanstalk使用 Tomcat 平台使用 Java SE 平台 总结 CloudCa…...

【数据库原理】(23)实际应用中的查询优化方法

一.基于索引的优化 索引是数据库查询优化的关键工具之一。合理地使用索引可以显著提高查询速度&#xff0c;降低全表扫描的成本。以下是建立和使用索引的一些基本原则和最佳实践。 索引的建立与使用原则 数据量规模与查询频率: 值得建立索引的表通常具有较多的记录&#xff0…...

MySQL中datetime和timestamp的区别

datetime和timestamp的区别 相同点: 存储格式相同 datetime和timestamp两者的时间格式都是YYYY-MM-DD HH:MM:SS 不同点: 存储范围不同. datetime的范围是1000-01-01到9999-12-31. 而timestamp是从1970-01-01到2038-01-19, 即后者的时间范围很小. 与时区关系. datetime是存储…...

2024年如何使用WordPress构建克隆Udemy市场

您想创建像 Udemy 这样的学习管理 (LMS) 网站吗&#xff1f;最好的学习管理系统工具LifterLMS将帮助您制作像Udemy市场这样的 LMS 网站。 目录 Udemy市场是什么&#xff1f; 创建 Udemy 克隆所需的几项强制性技术&#xff1a; 步骤 1) 注册您的域名 步骤 2) 获取虚拟主…...

(leetcode)Z字形变换 -- 模拟算法

个人主页&#xff1a;Lei宝啊 愿所有美好如期而遇 题目链接 . - 力扣&#xff08;LeetCode&#xff09; 输入描述 string convert(string s, int numRows)&#xff0c;输入一个字符串s&#xff0c;以及一个行数numRows&#xff0c;将字符串按照这个行数进行Z字形排列&…...

STM32--基于STM32F103的MAX30102心率血氧测量

本文介绍基于STM32F103ZET6MAX30102心率血氧测量0.96寸OLED&#xff08;7针&#xff09;显示&#xff08;完整程序代码见文末链接&#xff09; 一、简介 MAX30102是一个集成的脉搏血氧仪和心率监测仪生物传感器的模块。它集成了一个红光LED和一个红外光LED、光电检测器、光器…...

vscode里如何用git

打开vs终端执行如下&#xff1a; 1 初始化 Git 仓库&#xff08;如果尚未初始化&#xff09; git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

【kafka】Golang实现分布式Masscan任务调度系统

要求&#xff1a; 输出两个程序&#xff0c;一个命令行程序&#xff08;命令行参数用flag&#xff09;和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽&#xff0c;然后将消息推送到kafka里面。 服务端程序&#xff1a; 从kafka消费者接收…...

stm32G473的flash模式是单bank还是双bank?

今天突然有人stm32G473的flash模式是单bank还是双bank&#xff1f;由于时间太久&#xff0c;我真忘记了。搜搜发现&#xff0c;还真有人和我一样。见下面的链接&#xff1a;https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

ElasticSearch搜索引擎之倒排索引及其底层算法

文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令&#xff0c;在Linux上安装软件&#xff0c;以及如何在Linux上部署一个单体项目&#xff0c;大多数同学都会有相同的感受&#xff0c;那就是麻烦。 核心体现在三点&#xff1a; 命令太多了&#xff0c;记不住 软件安装包名字复杂&…...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生&#xff0c;我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要&#xff0c;而您认真负责的教学态度&#xff0c;让课程的每一部分都充满了实用价值。 尤其让我…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

[ACTF2020 新生赛]Include 1(php://filter伪协议)

题目 做法 启动靶机&#xff0c;点进去 点进去 查看URL&#xff0c;有 ?fileflag.php说明存在文件包含&#xff0c;原理是php://filter 协议 当它与包含函数结合时&#xff0c;php://filter流会被当作php文件执行。 用php://filter加编码&#xff0c;能让PHP把文件内容…...

探索Selenium:自动化测试的神奇钥匙

目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...