当前位置: 首页 > news >正文

数据结构 模拟实现二叉树(孩子表示法)

目录

一、二叉树的简单概念

(1)关于树的一些概念

(2)二叉树的一些概念及性质

定义二叉树的代码:

二、二叉树的方法实现

(1)createTree

(2)preOrder

(3)inOrder

(4)postOrder

(5)size

(6)getLeafNodeCount

(7)getKLevelNodeCount

(8)getHeight

(9)find

(10)levelOrder

(11)isCompleteTree

三、最终代码


一、二叉树的简单概念

(1)关于树的一些概念

结点的度:一个结点含有子树的个数称为该结点的度; 如上图:A的度为6
树的度:一棵树中,所有结点度的最大值称为树的度; 如上图:树的度为6
叶子结点或终端结点:度为0的结点称为叶结点; 如上图:B、C、H、I...等节点为叶结点
双亲结点或父结点:若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图:A是B的父结点
孩子结点或子结点:一个结点含有的子树的根结点称为该结点的子结点; 如上图:B是A的孩子结点
根结点:一棵树中,没有双亲结点的结点;如上图:A
结点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推
树的高度或深度:树中结点的最大层次; 如上图:树的高度为4
非终端结点或分支结点:度不为0的结点; 如上图:D、E、F、G...等节点为分支结点
兄弟结点:具有相同父结点的结点互称为兄弟结点; 如上图:B、C是兄弟结点
堂兄弟结点:双亲在同一层的结点互为堂兄弟;如上图:H、I互为兄弟结点
结点的祖先:从根到该结点所经分支上的所有结点;如上图:A是所有结点的祖先
子孙:以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是A的子孙
森林:由m(m>=0)棵互不相交的树组成的集合称为森林

(2)二叉树的一些概念及性质

概念:二叉树即为每个节点的度都小于等于2的树,即为二叉树。

性质:

1. 若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有 (i>0)个结点
2. 若规定只有根结点的二叉树的深度为1,则深度为K的二叉树的最大结点数是 (k>=0)
3. 对任何一棵二叉树, 如果其叶结点个数为 n0, 度为2的非叶结点个数为 n2,则有n0=n2+1
4. 具有n个结点的完全二叉树的深度k为 上取整
5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有节点从0开始编号,则对于序号为i的结点有:
若i>0,双亲序号:(i-1)/2;i=0,i为根结点编号,无双亲结点
若2i+1<n,左孩子序号:2i+1,否则无左孩子
若2i+2<n,右孩子序号:2i+2,否则无右孩子

定义二叉树的代码:

//孩子表示法
public class MyBinomialTree {static class TreeNode {char val;TreeNode left;TreeNode right;public TreeNode(char val) {this.val = val;}}
}

二、二叉树的方法实现

(1)createTree

此方法是创建一个二叉树,里面是已经构造好了的二叉树,画图是如下情况:

代码如下:

    //创建一个二叉树TreeNode createTree() {TreeNode A = new TreeNode('A');TreeNode B = new TreeNode('B');TreeNode C = new TreeNode('C');TreeNode D = new TreeNode('D');TreeNode E = new TreeNode('E');TreeNode F = new TreeNode('F');TreeNode G = new TreeNode('G');TreeNode H = new TreeNode('H');A.left = B;A.right = C;B.left = D;B.right = E;E.right = H;C.left = F;C.right = G;return A;}

在main方法中创建MyBinomialTree类的对象,调用此方法,就能创建出上面的二叉树,代码如下:

        MyBinomialTree myBinomialTree = new MyBinomialTree();MyBinomialTree.TreeNode root = myBinomialTree.createTree();

(2)preOrder

此方法是前序遍历二叉树的方法,前序遍历即为根左右的顺序遍历二叉树,上图我们创建的二叉树,前序遍历为:A B D E H C F G 

代码如下:

    // 前序遍历void preOrder(TreeNode root) {if(root == null) {return;}System.out.print(root.val + " ");preOrder(root.left);preOrder(root.right);}

执行效果如下:

和上面写的顺序一样。

(3)inOrder

此方法是中序遍历的方法,中序遍历即为左根右的顺序遍历二叉树,继续照着上面的图,中序遍历为:D B E H A F C G 

代码如下:

    // 中序遍历  -》 左根右void inOrder(TreeNode root){if(root == null) {return;}inOrder(root.left);System.out.print(root.val + " ");inOrder(root.right);}

执行效果如下:

和上面写的顺序一样。

(4)postOrder

此方法是后续遍历的方法,后序遍历即为左右根的顺序遍历二叉树,照着上面创建的二叉树图,后序遍历为:D H E B F G C A 

代码如下:

    // 后序遍历  -》 左右根void postOrder(TreeNode root){if(root == null) {return;}postOrder(root.left);postOrder(root.right);System.out.print(root.val + " ");}

执行效果如下:

和上面写的顺序一样。

(5)size

此方法是计算二叉树有多少个节点的方法,要计算二叉树有多少个节点,也意味着要遍历一遍二叉树,可以使用上面前中后序的任一遍历方法,用一个全局变量count1计数,如果遍历到当前节点不为空,则count++,最后返回count,代码如下:

    public static int count1 = 0;int size1(TreeNode root) {if(root == null) {return 0;}if(root != null) {count1++;}size1(root.left);size1(root.right);return count1;}

执行效果如下:

也可以使用子问题思想,二叉树的节点 = 当前root节点的左节点之和 + 当前root节点的右节点之和 + 1,如图:

左边的子树+右边的子树+root本身自己(1)

代码如下:

    // 获取树中节点的个数int size(TreeNode root) {if(root == null) {return 0;}return size(root.left) + size(root.right) + 1;}

执行效果如下:

(6)getLeafNodeCount

此方法是获取叶子节点的个数,要获取叶子节点个数,可以用遍历一遍二叉树的思想,找出二叉树那些节点即没有左孩子,也没有右孩子的节点,即叶子节点,所以要定义一个全局变量count2

代码如下:

    public static int count2 = 0;// 获取叶子节点的个数int getLeafNodeCount(TreeNode root) {if(root == null) {return 0;}if(root.left == null && root.right == null) {count2++;}getLeafNodeCount(root.left);getLeafNodeCount(root.right);return count2;}

执行效果如下:

从图中可以看出,叶子节点有4个。

子问题思路:也是需要遍历二叉树,但遍历的方式不同,如果找到是叶子节点就返回1,不是则return后面加上方法的递归,即root节点的左边子树的叶子节点+右边子树的叶子节点,如图:

代码如下:

    // 子问题思路-求叶子结点个数int getLeafNodeCount1(TreeNode root) {if(root == null) {return 0;}if(root.left == null && root.right == null) {return 1;}return getLeafNodeCount1(root.left) + getLeafNodeCount1(root.right);}

执行效果如下:

也是4个

(7)getKLevelNodeCount

此方法是获取第K层节点的个数,第K层节点的个数 = 第K-1层的所有节点的第二层节点的个数之和,如图,第三层节点的个数=第二层节点的所有节点的第一层节点的个数之和,即B节点的第一层节点之和+C节点的第一层节点之和,而第一层节点个数只能为1。

代码如下:

    // 获取第K层节点的个数int getKLevelNodeCount(TreeNode root,int k) {if(root == null) {return 0;}if(k == 1) {return 1;}return getKLevelNodeCount(root.left, k - 1) + getKLevelNodeCount(root.right, k - 1);}

执行效果如下:

从上图可以看出第三层节点有4个,和代码运行出的结果一样。

(8)getHeight

此方法是获取二叉树的高度,要获取二叉树的高度,就需要找出root节点下面每个分支的最高高度,然后再+1,如图:

很显然,上面二叉树的高度是3+1=4

代码如下:

    // 获取二叉树的高度int getHeight(TreeNode root) {if(root == null) {return 0;}if(root.left == null && root.right == null) {return 1;}return Math.max(getHeight(root.left), getHeight(root.right)) + 1;}

执行结果如下:

和预期结果一样。

(9)find

此方法是检测值为value的元素是否存在,要检查某个节点是否存在,就要对二叉树进行遍历,这里使用前序的遍历方法,但要注意,递归的时候要保存节点,所以要创建新的二叉树保存返回的节点

代码如下:

    // 检测值为value的元素是否存在TreeNode find(TreeNode root, char val) {if(root == null) {return null;}if(root.val == val) {return root;}TreeNode ret1 = find(root.left, val);if(ret1 != null) {return ret1;}TreeNode ret2 = find(root.right, val);if(ret2 != null) {return ret2;}return null;}

执行效果如下:

上面的二叉树存在 'C' 这个节点,假如找 'X' 节点,则不会存在,会是null,如图:

(10)levelOrder

此方法是层序遍历,层序遍历是从左到右,从上到下的遍历顺序,上图的二叉树层序遍历为:
A B C D E F G H 

这里需要使用到队列,用上面的二叉树为例子,下面展示二叉树的节点存放进队列的顺序,如下:

先把根节点存放进队列,如下图:

判断队列是不是空,不是空就出队列的元素,分别判断这个元素有没有左节点和右节点,如果有,就存进队列里,如下图:

出队顶元素,次数队顶元素是B,判断B有没有左右子树,有的话分别入队列,如下图:

下一步和上面一样,如下图:

最后依次出队顶元素,再把H入队列,依次遍历,也就实现了从左到右,从上到下的遍历

代码如下:
 

    //层序遍历void levelOrder(TreeNode root) {//没有二叉树,直接返回if(root == null) {return;}//使用队列存放二叉树的元素Queue<TreeNode> queue = new LinkedList<>();queue.offer(root);while (!queue.isEmpty()) {TreeNode ret = queue.poll();System.out.print(ret.val + " ");if(ret.left != null) {queue.offer(ret.left);}if(ret.right != null) {queue.offer(ret.right);}}}

执行效果如下:

和预期结果一样。

(11)isCompleteTree

此方法是判断一棵树是不是完全二叉树,完全二叉树,即除叶子节点外,其他节点的度都为2,如下图就是完全二叉树。

但是下面的图不是完全二叉树,也是createTree方法创建的二叉树

要判断二叉树是否为完全二叉树,可以里队列,第一步骤是把二叉树层序遍历一遍:一开始把根节点root入队列,判断循环的结束条件就是队列不为空,然后找当前节点的左右子树,当前节点不为null,它的左右子树就分别存进队列,为null就直接跳出循环。这样,如果队列里有节点,即不为空的元素,则该节点不是完全二叉树,如果该队列里全是null,则是完全二叉树。因为层序遍历,如果是完全二叉树,则最后一层节点遍历完后,队列存放的元素都为null,否则不是,如图:

第二步骤是把队列里所有元素都检查一遍,如果有不为null的元素,就返回false,全为null就返回true。

代码如下:

    // 判断一棵树是不是完全二叉树boolean isCompleteTree(TreeNode root) {if(root == null) {return true;}Queue<TreeNode> queue = new LinkedList<>();queue.offer(root);while (!queue.isEmpty()) {TreeNode ret = queue.poll();if(ret != null) {queue.offer(ret.left);queue.offer(ret.right);}else {break;}}while (!queue.isEmpty()) {TreeNode ret = queue.peek();if(ret == null) {queue.poll();} else {return false;}}return true;}

使用有H节点的的createTree方法,执行效果如下:

使用没有H节点的的createTree方法,执行效果如下:

符合我们的预期效果。


三、最终代码

public class MyBinomialTree {static class TreeNode {char val;TreeNode left;TreeNode right;public TreeNode(char val) {this.val = val;}}//创建一个二叉树TreeNode createTree() {TreeNode A = new TreeNode('A');TreeNode B = new TreeNode('B');TreeNode C = new TreeNode('C');TreeNode D = new TreeNode('D');TreeNode E = new TreeNode('E');TreeNode F = new TreeNode('F');TreeNode G = new TreeNode('G');TreeNode H = new TreeNode('H');A.left = B;A.right = C;B.left = D;B.right = E;//E.right = H;C.left = F;C.right = G;return A;}// 前序遍历void preOrder(TreeNode root) {if(root == null) {return;}System.out.print(root.val + " ");preOrder(root.left);preOrder(root.right);}// 中序遍历  -》 左根右void inOrder(TreeNode root){if(root == null) {return;}inOrder(root.left);System.out.print(root.val + " ");inOrder(root.right);}// 后序遍历  -》 左右根void postOrder(TreeNode root){if(root == null) {return;}postOrder(root.left);postOrder(root.right);System.out.print(root.val + " ");}public static int count1 = 0;int size1(TreeNode root) {if(root == null) {return 0;}if(root != null) {count1++;}size1(root.left);size1(root.right);return count1;}// 获取树中节点的个数int size(TreeNode root) {if(root == null) {return 0;}return size(root.left) + size(root.right) + 1;}public static int count2 = 0;// 获取叶子节点的个数int getLeafNodeCount(TreeNode root) {if(root == null) {return 0;}if(root.left == null && root.right == null) {count2++;}getLeafNodeCount(root.left);getLeafNodeCount(root.right);return count2;}// 子问题思路-求叶子结点个数int getLeafNodeCount1(TreeNode root) {if(root == null) {return 0;}if(root.left == null && root.right == null) {return 1;}return getLeafNodeCount1(root.left) + getLeafNodeCount1(root.right);}// 获取第K层节点的个数int getKLevelNodeCount(TreeNode root,int k) {if(root == null) {return 0;}if(k == 1) {return 1;}return getKLevelNodeCount(root.left, k - 1) + getKLevelNodeCount(root.right, k - 1);}// 获取二叉树的高度int getHeight(TreeNode root) {if(root == null) {return 0;}if(root.left == null && root.right == null) {return 1;}return Math.max(getHeight(root.left), getHeight(root.right)) + 1;}// 检测值为value的元素是否存在TreeNode find(TreeNode root, char val) {if(root == null) {return null;}if(root.val == val) {return root;}TreeNode ret1 = find(root.left, val);if(ret1 != null) {return ret1;}TreeNode ret2 = find(root.right, val);if(ret2 != null) {return ret2;}return null;}//层序遍历void levelOrder(TreeNode root) {//没有二叉树,直接返回if(root == null) {return;}//使用队列存放二叉树的元素Queue<TreeNode> queue = new LinkedList<>();queue.offer(root);while (!queue.isEmpty()) {TreeNode ret = queue.poll();System.out.print(ret.val + " ");if(ret.left != null) {queue.offer(ret.left);}if(ret.right != null) {queue.offer(ret.right);}}}// 判断一棵树是不是完全二叉树boolean isCompleteTree(TreeNode root) {if(root == null) {return true;}Queue<TreeNode> queue = new LinkedList<>();queue.offer(root);while (!queue.isEmpty()) {TreeNode ret = queue.poll();if(ret != null) {queue.offer(ret.left);queue.offer(ret.right);}else {break;}}while (!queue.isEmpty()) {TreeNode ret = queue.peek();if(ret == null) {queue.poll();} else {return false;}}return true;}
}

都看到这了,点个赞再走吧,谢谢谢谢!

相关文章:

数据结构 模拟实现二叉树(孩子表示法)

目录 一、二叉树的简单概念 &#xff08;1&#xff09;关于树的一些概念 &#xff08;2&#xff09;二叉树的一些概念及性质 定义二叉树的代码&#xff1a; 二、二叉树的方法实现 &#xff08;1&#xff09;createTree &#xff08;2&#xff09;preOrder &#xff08;…...

Android14之解决刷机报错:Can not load Android system. Your data may be corrupt(一百七十七)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…...

二阶贝塞尔曲线生成弧线

概述 本文分享一个二阶贝塞尔曲线曲线生成弧线的算法。 效果 实现 1. 封装方法 class ArcLine {constructor(from, to, num 100) {this.from from;this.to to;this.num num;return this.getPointList();}getPointList() {const { from, to } thisconst ctrlPoint thi…...

FilterQuery过滤查询

ES中的查询操作分为两种&#xff1a;查询和过滤。查询即是之前提到的query查询&#xff0c;它默认会计算每个返回文档的得分&#xff0c;然后根据得分排序。而过滤只会筛选出符合条件的文档&#xff0c;并不计算得分&#xff0c;并且可以缓冲记录。所以我们在大范围筛选数据时&…...

java多线程(并发)夯实之路-线程池深入浅出

线程池 Thread Pool&#xff1a;线程池&#xff0c;存放可以重复使用的线程&#xff08;消费者&#xff09; Blocking Queue&#xff1a;阻塞队列&#xff0c;存放等待执行的任务&#xff08;生产者&#xff09; poll方法&#xff08;有时限地获取任务&#xff09;相对take注…...

数据库-列的类型-字符串char类型

char 和 varchar 类型 char 类型懂得都懂就是固定的字符串类型 char (maxLen) 例如 char(5) 这个长度为5 但插入数据‘a’时 是5 插入abc 也是5 即使插满固定 就像C/C语言里 char 字符数组一样 char str[64]; maxLen255 哈哈最多有255个字符多了我认为你是错误 varchar…...

大话 JavaScript(Speaking JavaScript):第二十一章到第二十五章

第二十一章&#xff1a;数学 原文&#xff1a;21. Math 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 Math对象用作多个数学函数的命名空间。本章提供了一个概述。 数学属性 Math的属性如下&#xff1a; Math.E 欧拉常数&#xff08;e&#xff09; Math.LN2 2 …...

ICMP协议

ICMP协议是网络层协议&#xff0c; 利用ICMP协议可以实现网络中监听服务和拒绝服务&#xff0c;如 ICMP重定向的攻击。 一、ICMP基本概念 1、ICMP协议 ICMP是Internet控制报文协议&#xff0c;用于在IP主机、路由器之间传递控制消息&#xff0c;控制消息指网络通不通、主机是…...

环信服务端下载消息文件---菜鸟教程

前言 在服务端&#xff0c;下载消息文件是一个重要的功能。它允许您从服务器端获取并保存聊天消息、文件等数据&#xff0c;以便在本地进行进一步的处理和分析。本指南将指导您完成环信服务端下载消息文件的步骤。 环信服务端下载消息文件是指在环信服务端上&#xff0c;通过调…...

创建型模式 | 建造者模式

一、建造者模式 1、原理 建造者模式又叫生成器模式&#xff0c;是一种对象的构建模式。它可以将复杂对象的建造过程抽象出来&#xff0c;使这个抽象过程的不同实现方法可以构造出不同表现&#xff08;属性&#xff09;的对象。创建者模式是一步一步创建一个复杂的对象&#xf…...

MVC设计模式

在当今的软件开发领域&#xff0c;MVC&#xff08;Model-View-Controller&#xff09;设计模式已经成为了一种广泛使用的架构模式。它为应用程序提供了一种结构化的方法&#xff0c;将数据、用户界面和业务逻辑分开&#xff0c;从而使得应用程序更易于维护、扩展和重用。 一、…...

WSL (2103) ERROR: CreateProcessEntryCommon:493: chdir 错误解决

[TOC](WSL (2103) ERROR: CreateProcessEntryCommon:493: chdir 错误解决) 1. 错误信息 <3>WSL (2103) ERROR: CreateProcessEntryCommon:493: chdir(/mnt/d/Program Files/PowerShell/7) failed 52. 解决方法 wsl --shutdownwslrefer: https://github.com/microsoft/…...

【二、自动化测试】为什么要做自动化测试?哪种项目适合做自动化?

自动化测试是一种软件测试方法&#xff0c;通过编写和使用自动化脚本和工具&#xff0c;以自动执行测试用例并生成结果。 自动化旨在替代手动测试过程&#xff0c;提高测试效率和准确性。 自动化测试可以覆盖多种测试类型&#xff0c;包括功能测试、性能测试、安全测试等&…...

用ChatGPT来造一个ChatGPT:计算机领域智能问答系统实践(2)

在PHP语言中&#xff0c;你可以使用MySQL数据库来存储知识库&#xff0c;并使用PHP来实现系统的逻辑。以下是一个简单的示例&#xff1a; 创建数据库表&#xff1a; 首先&#xff0c;创建一个名为 computer_knowledge 的表来存储计算机知识。可以使用以下SQL语句&#xff1a;…...

Ubuntu开机自动挂载硬盘

前言&#xff1a; 因为我的电脑是WIN10 Ubuntu18.04双系统&#xff0c;且两个系统都装在C盘上&#xff0c;而D盘作为数据和代码存储盘&#xff0c;经常会开机就被访问&#xff0c;例如上一次关机前用VS Code访问D盘代码&#xff0c;然后下一次开机的时候打开VSCode发现打不开…...

vue3基础:单文件组件介绍

介绍 Vue 的单文件组件 (即 *.vue 文件&#xff0c;简称 SFC&#xff0c;全称是single file component) 是一种特殊的文件格式&#xff0c;使我们能够将一个 Vue 组件的模板、逻辑与样式封装在单个文件中。下面是一个单文件组件的示例&#xff1a; <script> export def…...

OCR字符识别:开始批量识别身份证信息

身份证信息批量识别OCR是一项解决方案&#xff0c;它能够将身份证照片打包成zip格式或通过URL地址进行提交&#xff0c;并能够识别照片中的文本信息。最终&#xff0c;用户可以将识别结果生成为excel文件进行下载。 API接口功能&#xff1a; 1. 批量识别&#xff1a;支持将多…...

php多小区智慧物业管理系统源码带文字安装教程

多小区智慧物业管理系统源码带文字安装教程 运行环境 服务器宝塔面板 PHP 7.0 Mysql 5.5及以上版本 Linux Centos7以上 统计分析以小区为单位&#xff0c;统计如下数据&#xff1a;小区总栋数、小区总户数、小区总人数、 小区租户数量、小区每月收费金额统计、小区车位统计、小…...

解决虚拟机的网络图标不见之问题

在WIN11中&#xff0c;启动虚拟机后&#xff0c;发现网络图标不见了&#xff0c;见下图&#xff1a; 1、打开虚拟机终端 输入“sudo server network-manager stop”&#xff0c;停止网络管理器 输入“cd /回车” &#xff0c; 切换到根目录 输入“cd var回车” &#xff0c;…...

【Spring类路径Bean定义信息扫描】

Spring类路径Bean定义信息扫描 1. ClassPathBeanDefinitionScanner作用2. 类声明3. 属性4. 构造器5. 扫描方法6. 真正扫描方法7. postProcessBeanDefinition8. 注册bean定义 1. ClassPathBeanDefinitionScanner作用 扫描类路径下的类注册为bean定义。2. 类声明 public class …...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来&#xff0c;Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中&#xff0c;车辆不再仅仅是传统的交通工具&#xff0c;而是逐步演变为高度智能的移动终端。这一转变的核心支撑&#xff0c;来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒&#xff08;T-Box&#xff09;方案&#xff1a;NXP S32K146 与…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型&#xff08;Vision-Language Models, VLMs&#xff09;&#xff0c;为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展&#xff0c;机器人仍难以胜任复杂的长时程任务&#xff08;如家具装配&#xff09;&#xff0c;主要受限于人…...