当前位置: 首页 > news >正文

法线变换矩阵的推导

背景

在冯氏光照模型中,其中的漫反射项需要我们对法向量和光线做点乘计算。

从顶点着色器中读入的法向量数据处于模型空间,我们需要将法向量转换到世界空间,然后在世界空间中让法向量和光线做运算。这里便有一个问题,如何将法线从当前的模型空间变换到世界空间?

首先,法向量只是一个方向向量,不能表达空间中的特定位置。同时,法向量没有齐次坐标(顶点位置中的w分量)。这意味着,位移不应该影响到法向量。因此,如果我们打算把法向量乘以一个模型矩阵,我们就要从矩阵中移除位移部分,只选用模型矩阵左上角3×3的矩阵(注意,我们也可以把法向量的w分量设置为0,再乘以4×4矩阵;这同样可以移除位移)。对于法向量,我们只希望对它实施缩放和旋转变换。

其次,如果模型矩阵执行了不等比缩放,顶点的改变会导致法向量不再垂直于表面了。因此,我们不能用这样的模型矩阵来变换法向量。下面的图展示了应用了不等比缩放的模型矩阵对法向量的影响:

在这里插入图片描述

当我们应用一个不等比缩放时(注意:等比缩放不会破坏法线,因为法线的方向没被改变,仅仅改变了法线的长度,而这很容易通过标准化来修复),法向量就不会再垂直于对应的表面了,这样光照就会被破坏。

修复这个行为的诀窍是使用一个为法向量专门定制的模型矩阵。这个矩阵称之为法线矩阵(Normal Matrix),它使用了一些线性代数的操作来移除对法向量错误缩放的影响。

推导过程

为了将一个顶点从模型空间转换到世界空间,我们可以乘上一个模型矩阵model,包含物体的移动、旋转、缩放信息。在shader中的代码如下:

FragPos = vec3(model * vec4(aPos, 1.0));

对于一个向量,正如上面的图展示的一样,我们不能简单乘上model矩阵。如果乘上model矩阵,向量就不再和原来的表面切线垂直了。

我们可以定义表面切线为 T = P 2 − P 1 T = P_2 - P1 T=P2P1,其中 P 1 , P 2 P_1,P_2 P1,P2都是表面上的顶点。当表面前线乘上model矩阵时,我们有:
m o d e l ∗ T = m o d e l ∗ P 2 − m o d e l ∗ P 1 T ′ = P 2 ′ − P 1 ′ model * T = model * P_2 - model * P_1 \\ T' = P_2' - P_1' modelT=modelP2modelP1T=P2P1
变换后的表面切线 T ′ T' T仍然可以表示成表面上顶点的差,因此乘上model矩阵之后,表面切线不会被破坏。

对于表面上的法线 N N N,我们无法从表面上找到两个顶点来表示,但是我们知道表面法线与切线互相垂直,即
N ⋅ T = 0 N \cdot T = 0 NT=0
我们假设矩阵 G G G就是可以将法线从模型空间转换到世界空间的正确矩阵,并用 M M M来表示模型矩阵model,于是有下式:
N ′ ⋅ T ′ = ( G N ) ⋅ ( M T ) = 0 N' \cdot T' = (GN)\cdot(MT) = 0 NT=(GN)(MT)=0
转化成矩阵表示的形式
( G N ) ⋅ ( M T ) = ( G N ) T ∗ ( M T ) = N T G T M T = 0 (GN)\cdot(MT) = (GN)^T*(MT) = N^TG^TMT = 0 (GN)(MT)=(GN)T(MT)=NTGTMT=0
我们知道 N ⋅ T = N T T = 0 N\cdot T = N^TT = 0 NT=NTT=0,所以如果 G T M = a I G^TM = aI GTM=aI a a a是任意非零常数,我们便有
N ′ ⋅ T ′ = N T G T M T = N T a I T = a N T T = 0 N'\cdot T' = N^TG^TMT = N^TaIT = aN^TT = 0 NT=NTGTMT=NTaIT=aNTT=0
由于我们不想改变法向量的模长,因此令 a = 1 a = 1 a=1,只要满足 G T M = I G^TM = I GTM=I的条件,我们就可以说 G G G是我们最终需要的矩阵,进一步计算
G T M = I ⟷ G = ( M − 1 ) T G^TM = I \longleftrightarrow G = (M^{-1})^T GTM=IG=(M1)T
最终可得,将法线从模型空间转换到世界空间的矩阵为 ( M − 1 ) T (M^{-1})^T (M1)T

补充说明

当模型矩阵只进行了旋转或等比缩放时,我们用这个矩阵来变换法线向量,可以得到正确的结果。

这是因为旋转矩阵和等比缩放矩阵都是正交矩阵,正交矩阵有一个属性:矩阵的转置等于矩阵的逆。

因此
M − 1 = M T → G = ( M − 1 ) T = M M^{-1} = M^T \rightarrow G = (M^{-1})^T = M M1=MTG=(M1)T=M

参考

https://learnopengl-cn.github.io/02%20Lighting/02%20Basic%20Lighting/

http://www.lighthouse3d.com/tutorials/glsl-12-tutorial/the-normal-matrix/

相关文章:

法线变换矩阵的推导

背景 在冯氏光照模型中,其中的漫反射项需要我们对法向量和光线做点乘计算。 从顶点着色器中读入的法向量数据处于模型空间,我们需要将法向量转换到世界空间,然后在世界空间中让法向量和光线做运算。这里便有一个问题,如何将法线…...

React.Children.map 和 js 的 map 有什么区别?

JavaScript 中的 map 不会对为 null 或者 undefined 的数据进行处理,而 React.Children.map 中的 map 可以处理 React.Children 为 null 或者 undefined 的情况。 React 空节点:可以由null、undefined、false、true创建 import React from reactexport …...

13.Kubernetes部署Go应用完整流程:从Dockerfile到Ingress发布完整流程

本文以一个简单的Go应用Demo来演示Kubernetes应用部署的完整流程 1、Dockerfile多阶段构建 Dockerfile多阶段构建 [root@docker github]# git clone https://gitee.com/yxydde/http-dump.git [root@docker github]# cd http-dump/ [root@docker http-dump]# cat Dockerfile …...

叉车车载终端定制_基于MT6762安卓核心板的车载终端设备方案

叉车车载终端是一款专为叉车车载场景设计的4英寸Android车载平板电脑。它采用了高能低耗的8核ARM架构处理器和交互开放的Android 12操作系统,算力表现强大。此外,该产品还具备丰富的Wi-Fi-5、4G LTE和蓝牙等通讯功能,可选配外部车载蘑菇天线&…...

【CSS】保持元素宽高比

保持元素的宽高比,在视频或图片展示类页面是一个重要功能。 本文介绍其常规的实现方法。 实现效果 当浏览器视口发生变化时,元素的尺寸随之变化,且宽高比不变。 代码实现 我们用最简单的元素结构来演示,实现宽高比为4&#xf…...

使用 Docker 和 Diffusers 快速上手 Stable Video Diffusion 图生视频大模型

本篇文章聊聊,如何快速上手 Stable Video Diffusion (SVD) 图生视频大模型。 写在前面 月底计划在机器之心的“AI技术论坛”做关于使用开源模型 “Stable Diffusion 模型” 做有趣视频的实战分享。 因为会议分享时间有限,和之前一样,比较简…...

C++ namespace高级用法

高级用法 C++中的命名空间(namespace)是一种用于组织代码的机制,它可以帮助避免命名冲突,并使代码更加清晰和易于维护。以下是C++命名空间的一些高级用法: 嵌套命名空间:命名空间可以嵌套在其他命名空间中,形成一个层次结构。嵌套命名空间可以进一步细化命名空间,使其更…...

如何允许远程访问 MySQL

前些天发现了一个人工智能学习网站,通俗易懂,风趣幽默,最重要的屌图甚多,忍不住分享一下给大家。点击跳转到网站。 如何允许远程访问 MySQL 现在许多网站和应用程序一开始的 Web 服务器和数据库后端都托管在同一台计算机上。随着…...

PostgreSQL认证考试PGCA、PGCE、PGCM

PostgreSQL认证考试PGCA、PGCE、PGCM 【重点!重点!重点!】PGCA、PGCE、PGCM 直通车快速下正,省心省力,每2个月一次考试 PGCE考试通知 (2024) 一、考试概览 (一) 报名要…...

Matlab深度学习进行波形分割(二)

🔗 运行环境:Matlab 🚩 撰写作者:左手の明天 🥇 精选专栏:《python》 🔥 推荐专栏:《算法研究》 🔐#### 防伪水印——左手の明天 ####🔐 💗 大家…...

Markdown高级用法——mermaid

Markdown高级用法——mermaid 起初是写文章,其中有时序图流程图等一般是processOn或者draw.io画截图粘过去的,工作中又是腾讯文档,上面也能画图,但假如我笔记软件用语雀之类的又要把一张图反复粘贴,浪费内存&#xff…...

cf919Div2C题题目总结

Problem - C - Codeforces 这道题其实是一道数学题。 先看第一个变量,也就是我们要求的答案k的数量,但看k是很好确定它的限制条件的,要想均匀分成k份,n%k必须为0,有了k,我们再来看m,对于a(1)和…...

Pandas实战100例 | 案例 4: 数据选择和索引 - 选择特定的列和行

案例 4: 数据选择和索引 - 选择特定的列和行 知识点讲解 在 Pandas 中,选择数据是一个非常常见的操作。你可以选择特定的列或行,或者基于某些条件筛选数据。 示例代码 选择特定的列 # 选择单列 selected_column df[ColumnName]# 选择多列 selected…...

Netty-Netty实现自己的通信框架

通信框架功能设计 功能描述 通信框架承载了业务内部各模块之间的消息交互和服务调用,它的主要功能如下: 基于 Netty 的 NIO 通信框架,提供高性能的异步通信能力; 提供消息的编解码框架,可以实现 POJO 的序列化和反…...

【算法刷题】总结规律 算法题目第2讲 [234] 回文链表,因为深浅拷贝引出的bug

配合b站视频讲解食用更佳:https://www.bilibili.com/video/BV1vW4y1P7V7 核心提示:好几道题是处理有序数组的! 适合人群:考研/复试/面试 解决痛点:1. 刷了就忘 2.换一道相似的题就不会 学完后会输出:对每类题目的框架…...

RabbitMQ如何保证消息不丢失?

RabbitMQ如何保证消息不丢失? 消息丢失的情况 生产者发送消息未到达交换机生产者发送消息未到达队列MQ宕机,消息丢失消费者服务宕机,消息丢失 生产者确认机制 解决的问题:publisher confirm机制来避免消息发送到MQ过程中消失。…...

Random的使用

作用:生成伪随机数 1.导包:import java.util.Random 2.得到随机数对象:Random r new Random(); 3.调用随机数的功能获取随机数: 这里随机生成一个0-9的整数: int number r.nextInt(10); 实现指定区间的随机数&a…...

通过反射修改MultipartFile类文件名

1、背景 项目上有这样一个需求&#xff0c;前端传文件过来&#xff0c;后端接收后按照特定格式对文件进行重命名。(修改文件名需求其实也可以在前端处理的) //接口类似于下面这个样子 PosMapping("/uploadFile") public R uploadFile(List<MultipartFile> fil…...

Macos下修改Python版本

MacOS下修改Python版本 安装 查看本机已安装的Python版本&#xff1a;where python3 ~ where python3 /usr/bin/python3 /usr/local/bin/python3 /Library/Frameworks/Python.framework/Versions/3.12/bin/python3如果没有你想要的版本&#xff0c;去python官网下载安装包。…...

多种采购方式下,数智化招标采购系统建设解决方案

广发证券成立于1991年&#xff0c;是国内首批综合类证券公司&#xff0c;先后于2010年和2015年在深圳证券交易所及香港联合交易所主板上市。 多年来&#xff0c;广发证券在竞争激烈、复杂多变的行业环境中努力开拓、锐意进取&#xff0c;以卓越的经营业绩、持续完善的全面风险…...

前端开发面试题总结-JavaScript篇(一)

文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包&#xff08;Closure&#xff09;&#xff1f;闭包有什么应用场景和潜在问题&#xff1f;2.解释 JavaScript 的作用域链&#xff08;Scope Chain&#xff09; 二、原型与继承3.原型链是什么&#xff1f;如何实现继承&a…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...

laravel8+vue3.0+element-plus搭建方法

创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...

接口自动化测试:HttpRunner基础

相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具&#xff0c;支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议&#xff0c;涵盖接口测试、性能测试、数字体验监测等测试类型…...

wpf在image控件上快速显示内存图像

wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像&#xff08;比如分辨率3000*3000的图像&#xff09;的办法&#xff0c;尤其是想把内存中的裸数据&#xff08;只有图像的数据&#xff0c;不包…...

如何应对敏捷转型中的团队阻力

应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中&#xff0c;明确沟通敏捷转型目的尤为关键&#xff0c;团队成员只有清晰理解转型背后的原因和利益&#xff0c;才能降低对变化的…...

十九、【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建

【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建 前言准备工作第一部分:回顾 Django 内置的 `User` 模型第二部分:设计并创建 `Role` 和 `UserProfile` 模型第三部分:创建 Serializers第四部分:创建 ViewSets第五部分:注册 API 路由第六部分:后端初步测…...

es6+和css3新增的特性有哪些

一&#xff1a;ECMAScript 新特性&#xff08;ES6&#xff09; ES6 (2015) - 革命性更新 1&#xff0c;记住的方法&#xff0c;从一个方法里面用到了哪些技术 1&#xff0c;let /const块级作用域声明2&#xff0c;**默认参数**&#xff1a;函数参数可以设置默认值。3&#x…...

多元隐函数 偏导公式

我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式&#xff0c;给定一个隐函数关系&#xff1a; F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 &#x1f9e0; 目标&#xff1a; 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z​、 …...

2025年低延迟业务DDoS防护全攻略:高可用架构与实战方案

一、延迟敏感行业面临的DDoS攻击新挑战 2025年&#xff0c;金融交易、实时竞技游戏、工业物联网等低延迟业务成为DDoS攻击的首要目标。攻击呈现三大特征&#xff1a; AI驱动的自适应攻击&#xff1a;攻击流量模拟真实用户行为&#xff0c;差异率低至0.5%&#xff0c;传统规则引…...