当前位置: 首页 > news >正文

341. 最优贸易(dp思想运用,spfa,最短路)

341. 最优贸易 - AcWing题库

C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市。

任意两个城市之间最多只有一条道路直接相连。

这 m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双向通行的道路在统计条数时也计为 1 条。

C 国幅员辽阔,各地的资源分布情况各不相同,这就导致了同一种商品在不同城市的价格不一定相同。

但是,同一种商品在同一个城市的买入价和卖出价始终是相同的。

商人阿龙来到 C 国旅游。

当他得知“同一种商品在不同城市的价格可能会不同”这一信息之后,便决定在旅游的同时,利用商品在不同城市中的差价赚一点旅费。

设 C 国 n 个城市的标号从 1∼n,阿龙决定从 1 号城市出发,并最终在 n 号城市结束自己的旅行。

在旅游的过程中,任何城市可以被重复经过多次,但不要求经过所有 n 个城市。

阿龙通过这样的贸易方式赚取旅费:他会选择一个经过的城市买入他最喜欢的商品——水晶球,并在之后经过的另一个城市卖出这个水晶球,用赚取的差价当做旅费。

因为阿龙主要是来 C 国旅游,他决定这个贸易只进行最多一次,当然,在赚不到差价的情况下他就无需进行贸易。

现在给出 n 个城市的水晶球价格,m 条道路的信息(每条道路所连接的两个城市的编号以及该条道路的通行情况)。

请你告诉阿龙,他最多能赚取多少旅费。

注意:本题数据有加强。

输入格式

第一行包含 2 个正整数 n 和 m,中间用一个空格隔开,分别表示城市的数目和道路的数目。

第二行 n 个正整数,每两个整数之间用一个空格隔开,按标号顺序分别表示这 n 个城市的商品价格。

接下来 m 行,每行有 33 个正整数,x,y,z,每两个整数之间用一个空格隔开。

如果 z=1,表示这条道路是城市 x 到城市 y 之间的单向道路;如果 z=2,表示这条道路为城市 x 和城市 y 之间的双向道路。

输出格式

一个整数,表示答案。

数据范围

1≤n≤100000
1≤m≤500000
1≤各城市水晶球价格≤100

输入样例:
5 5
4 3 5 6 1
1 2 1
1 4 1
2 3 2
3 5 1
4 5 2
输出样例:
5

解析 :

本题做法有很多,可以使用分层图来处理,这里使用dp的方式处理。

状态划分:不重不漏,将状态转移所依据的状态体现出来;

fmax[i], fmin[i] 表示:路径上买和卖的分界点为 i 时,买入的最小值为fmin[i],卖出的最大值为fmax[i];

那么最终的结果就为 max{fmax[i]-fmin[i]}。

状态转移方程为:fmin[k]=min(fmin[j],……,wk),

fmax[k]的状态转移方程类似。

本质上是个dp问题,由于本题中的图可能是有环的,即dp的状态转移是环形的具有后效性,所以我们需要将其转换最短路问题进行处理(对于环形dp可查看dp专栏)

本题要有一点特别的地方是,本题边的权值在点上,而不在边上。仔细观察可以发现,本题是不能使用Dijkstra 算法的,因为从公式fmin[k]=min(fmin[j],……,wk)可以看出来如果使用Dijkstra算法,当存在环时,已经更新过的点还有可能被更新,等价于有负权边,换句话说,路径上的最小距离不单调递增。所以我们只能使用bellman_ford算法或其升级版算法spfa算法。

dp相当于求拓扑图上的最短路。spfa可以求任意图上的最短路。

#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<math.h>
#include<map>
#include<sstream>
#include<deque>
#include<unordered_map>
using namespace std;
typedef pair<double, int > PDI;
typedef pair<int, int> PII;
const int N = 1e5 + 5, M = 2e6 + 5, INF = 0x3f3f3f3f;
int n, m;
int ht[N], hs[N], e[M], ne[M], idx;
int w[N], dmin[N], dmax[N];
int q[N];
int vis[N];void add(int h[], int a, int b) {e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}void spfa(int h[], int dist[], int type) {int hh = 0, tt = 1;if (type==0) {memset(dist, 0x3f, sizeof dmin);dist[1] = w[1];q[0] = 1;}else {memset(dist, 0, sizeof dmax);dist[n] = w[n];q[0] = n;}while (hh != tt) {int t = q[hh++];if (hh == N)hh = 0;vis[t] = 0;for (int i = h[t]; i != -1; i = ne[i]) {int j = e[i];if (type == 0 && dist[j]>min(dist[t], w[j]) || type == 1 && dist[j]<max(dist[t], w[j])) {if (type == 0) {dist[j] = min(dist[t], w[j]);}else {dist[j] = max(dist[t], w[j]);}if (vis[j] == 0) {q[tt++] = j;if (tt == N)tt = 0;vis[j] = 1;}}}}
}int main() {scanf("%d%d", &n, &m);for (int i = 1; i <= n; i++) {scanf("%d", &w[i]);}memset(hs, -1, sizeof hs);memset(ht, -1, sizeof ht);for (int i = 1,a,b,c; i <= m; i++) {scanf("%d%d%d", &a, &b,&c);add(hs, a, b), add(ht, b, a);if (c == 2) {add(hs, b, a), add(ht, a, b);}}spfa(hs, dmin, 0);spfa(ht, dmax, 1);int ret = 0;for (int i = 1; i <= n; i++) {ret = max(dmax[i] - dmin[i], ret);}cout << ret << endl;return 0;
}

相关文章:

341. 最优贸易(dp思想运用,spfa,最短路)

341. 最优贸易 - AcWing题库 C 国有 n 个大城市和 m 条道路&#xff0c;每条道路连接这 n 个城市中的某两个城市。 任意两个城市之间最多只有一条道路直接相连。 这 m 条道路中有一部分为单向通行的道路&#xff0c;一部分为双向通行的道路&#xff0c;双向通行的道路在统计…...

FineBI实战项目一(19):每小时订单笔数分析开发

点击新建组件&#xff0c;创建下每小时订单笔数组件。 选择饼图&#xff0c;拖拽cnt&#xff08;总数&#xff09;到角度&#xff0c;拖拽hourstr到颜色&#xff0c;调节内径。 修改现在的文字 拖拽组件到仪表盘。 效果如下&#xff1a;...

What is `@RequestBody ` does?

RequestBody 是SpringMVC框架中的注解&#xff0c;通常与POST、PUT等方法配合使用。当客户端发送包含JSON或XML格式数据的请求时&#xff0c;可以通过该注解将请求体内容绑定到Controller方法参数上 作用 自动反序列化&#xff1a; SpringMVC会根据RequestBody注解的参数类型&…...

Windows安装Rust环境(详细教程)

一、 安装mingw64(C语言环境) Rust默认使用的C语言依赖Visual Studio&#xff0c;但该工具占用空间大安装也较为麻烦&#xff0c;可以选用轻便的mingw64包。 1.1 安装地址 (1) 下载地址1-GitHub&#xff1a;Releases niXman/mingw-builds-binaries GitHub (2) 下载地址2-W…...

Marin说PCB之传输线损耗---趋肤效应和导体损耗01

大家在做RF上的PCB走线或者是车载相机的上走线的时候经常会听那些硬件工程师们说你这个走线一定要保证50欧姆的阻抗匹配啊&#xff0c;还有就是记得加粗走做隔层参考。 有的公司的EE硬件同事会很贴心的把RF走线的注意事项给你备注在原理图上或者是layoutguide上&#xff0c;遇到…...

八:分布式锁

1、为什么要使用分布式锁 锁是多线程代码中的概念&#xff0c;只有多任务访问同一个互斥的共享资源时才需要锁。单机应用开发时一般使用synchronized或lock。多线程的运行都是在同一个JVM之下。应用是分布式集群&#xff0c;属于多JVM的工作环境&#xff0c;JVM之间已经无法通过…...

示例:php将文本内容写入一个文件(面向过程写法)

一、封装2个函数&#xff0c;读写文件 /*** desc 读取文件内容* param string $filename* return array*/ private function readContent(string $filename): array {$text file_get_contents($filename);if (!$text) {return [];}$result json_decode($text,true);return…...

Flutter开发进阶之并发操作数据库

Flutter开发进阶之并发操作数据库 尽管 Flutter 本身不包含任何数据库功能&#xff0c;但可以使用各种第三方库和插件来在 Flutter 应用程序中实现数据库功能&#xff1b; 以下将使用sqflite作为例子&#xff0c;sqflite允许在 Flutter 应用程序中执行 SQL 查询&#xff0c;创…...

docker应用:搭建uptime-kuma监控站点

简介&#xff1a;Uptime Kuma是一个易于使用的自托管监控工具&#xff0c;它的界面干净简洁&#xff0c;部署和使用都非常方便。 历史攻略&#xff1a; docker&#xff1a;可视化工具portainer docker-compose&#xff1a;搭建自动化运维平台Spug 开源地址&#xff1a; ht…...

在illustrator中按大小尺寸选择物体 <脚本 018>

在Illustrator中我们可以依据对象的属性 如&#xff1a;填充颜色、描边颜色或描边宽度来选择相同属性的对象&#xff0c;但是Illustrator中没有根据不同大小尺寸来选择对象的功能&#xff0c;下面介绍的就是根据大小尺寸选择对象的脚本。 1、下面是当前画板中的所有对象&#…...

leetcode - 934. Shortest Bridge

Description You are given an n x n binary matrix grid where 1 represents land and 0 represents water. An island is a 4-directionally connected group of 1’s not connected to any other 1’s. There are exactly two islands in grid. You may change 0’s to 1…...

k8s的存储卷、数据卷

容器内的目录和宿主机目录进行挂载。 容器在系统上的生命周期是短暂的。 k8s用控制器创建的pod。delete相当于重启。容器的状态也会恢复到初始状态。一旦恢复到初始状态&#xff0c;所有的后天编辑的文件都会消失 容器和节点之间创建一个可以持久化保存容器内文件的存储卷。…...

流星全自动网页生成系统重构版源码

流星全自动网页生成系统重构版源码分享&#xff0c;所有模板经过精心审核与修改&#xff0c;完美兼容小屏手机大屏手机&#xff0c;以及各种平板端、电脑端和360浏览器、谷歌浏览器、火狐浏览器等等各大浏览器显示。 为用户使用方便考虑&#xff0c;全自动网页制作系统无需繁琐…...

vscode打开c_cpp_properties.json文件的一种方式

步骤一 点击win32 步骤二 点击json 自动生成了...

发起人自选-钉钉审批

场景描述 配置一个审批流程&#xff0c;在某些审批节点&#xff0c;不能确定谁具体来审批&#xff0c;所以需要手工选择一个人或者多个人保证流程能得以顺利通过。有些审批流程的做法是&#xff0c;上一个节点来选择指定的人&#xff0c;而钉钉的做法是发起人来指定。 钉钉设…...

电脑DIY-显卡

显卡 英伟达&#xff08;NVIDIA&#xff09;RTX系列 英伟达&#xff08;NVIDIA&#xff09; 英伟达&#xff08;NVIDIA&#xff09;是一家知名的图形处理器制造商&#xff0c;其显卡产品系列众多。以下是英伟达显卡的主要系列&#xff1a; 系列面向客户说明产品GeForce系列个…...

vue3+vite+ts+pinia新建项目(略详细版)

1、新建项目 npm create vite@latest 2、安装依赖 yarn add vue-router yarn add -D @types/node vite-plugin-pages sass sass-loader 3、配置别名 //vite.config.ts import { defineConfig } from vite import path from node:path export default defineConfig({ plu…...

深入理解 Flink(五)Flink Standalone 集群启动源码剖析

前言 Flink 集群的逻辑概念&#xff1a; JobManager(StandaloneSessionClusterEntrypoint) TaskManager(TaskManagerRunner) Flink 集群的物理概念&#xff1a; ResourceManager(管理集群所有资源&#xff0c;管理集群所有从节点) TaskExecutor(管理从节点资源&#xff0c;接…...

SpringCloud Aliba-Nacos-从入门到学废【2】

&#x1f95a;今日鸡汤&#x1f95a; 比起不做而后悔&#xff0c;不如做了再后悔。 ——空白《游戏人生》 目录 &#x1f9c8;1.Nacos集群架构说明 &#x1f9c2;2.三种部署模式 &#x1f37f;3.切换到mysql 1.在nacos-server-2.0.3\nacos\conf里找到nacos-mysql.sql 2.查…...

web前端算法简介之字典与哈希表

回顾 栈、队列 &#xff1a; 进、出 栈&#xff08;Stack&#xff09;&#xff1a; 栈的操作主要包括&#xff1a; 队列&#xff08;Queue&#xff09;&#xff1a; 队列的操作主要包括&#xff1a; 链表、数组 &#xff1a; 多个元素存储组成的 简述链表&#xff1a;数组&…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

练习(含atoi的模拟实现,自定义类型等练习)

一、结构体大小的计算及位段 &#xff08;结构体大小计算及位段 详解请看&#xff1a;自定义类型&#xff1a;结构体进阶-CSDN博客&#xff09; 1.在32位系统环境&#xff0c;编译选项为4字节对齐&#xff0c;那么sizeof(A)和sizeof(B)是多少&#xff1f; #pragma pack(4)st…...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下&#xff0c;知识图谱凭借其高效的信息组织能力&#xff0c;正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合&#xff0c;探讨知识图谱开发的实现细节&#xff0c;帮助读者掌握该技术栈在实际项目中的落地方法。 …...

LLM基础1_语言模型如何处理文本

基于GitHub项目&#xff1a;https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken&#xff1a;OpenAI开发的专业"分词器" torch&#xff1a;Facebook开发的强力计算引擎&#xff0c;相当于超级计算器 理解词嵌入&#xff1a;给词语画"…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...