当前位置: 首页 > news >正文

信用评价研究MATLAB仿真代码

信用评价是各种店铺卖家分析买家信用行为的重要内容, 本文给出随机仿真代码模拟实际交易过程的信用评价. 主要研究内容有:

(1)研究最大交易额和信用度的关系

(2)研究买家不评价率对信用度影响

(3)研究交易次数对信用度影响

MATLAB程序如下:

主程序main.m

%% 
clc;close all;clear all;
sita=0.20; %差距容忍度
beta=0.85; %衰减因子
%% 产生交易信息
k=200;%k=买家人数
timeMin=1;%[timeMin,timeMax]=交易时间范围
timeMax=100;%[timeMin,timeMax]=交易时间范围
TnumberMin=1;%[TnumberMin,TnumberMax]=交易次数范围
TnumberMax=80;%[TnumberMin,TnumberMax]=交易次数范围
moneyMin=20;%[moneyMin,moneyMax]=交易金额范围
moneyMax=1000;%[moneyMin,moneyMax]=交易金额范围
SEvaluategoodMin=0.9;%[SEvaluateMin,SEvaluateMax]=对卖家的好评率范围[0.7,0.9],0-0.7为好评,0.7-0.9为中,0.9-1为差
SEvaluategoodMax=0.96;%[SEvaluateMin,SEvaluateMax]=对卖家的好评率范围[0.7,0.9],0-0.7为好评,0.7-0.9为中,0.9-1为差
SEvaluatemidMin=0.98;
SEvaluatemidMax=0.999;
noEvaluateRate=0.2;%noEvaluateRate=买家不评价的概率
BEvaluateMin=0.9;%[BEvaluateMin,BMax]=买家自身的好评率范围
BEvaluateMax=0.99;%[BEvaluateMin,BMax]=买家自身的好评率范围
[TransData,N,LP]=TransInf(k,timeMin,timeMax,TnumberMin,TnumberMax,moneyMin,moneyMax,SEvaluategoodMin,SEvaluategoodMax,...
    SEvaluatemidMin,SEvaluatemidMax,noEvaluateRate,BEvaluateMin,BEvaluateMax);%jisuan
% N=总交易次数
%k=买家人数
%[timeMin,timeMax]=交易时间范围
%[TnumberMin,TnumberMax]=交易次数范围
%[moneyMin,moneyMax]=交易金额范围
%[SEvaluateMin,SEvaluateMax]=对卖家的好评率范围[0.7,0.9],0-0.7为好评,0.7-0.9为中,0.9-1为差,SEvaluategoodMin,SEvaluategoodMax,SEvaluatemidMin,SEvaluatemidMax
%noEvaluateRate=买家不评价的概率
%[BEvaluateMin,BMax]=买家自身的好评率范围

%TransData(i).B=i=第i个买家
%TransData(i).S=卖家,不要了
%TransData(i).T=第i次交易的时间
%TransData(i).M=第i次交易的金额
%TransData(i).R=第i次交易的评价值,好评则为1,中评则为0,差评则为一1
%TransData(i).rou=买家自身的好评率
%LP=评价率

%% 
Pi=zeros(k,1);
for i=1:k
    T=TransData(i).T;
    M=TransData(i).M;
    R=TransData(i).R;
    ysl=(T).*M;
    Pi(i,1)=sum(R.*ysl/sum(ysl));
end

Pmean=mean(Pi);

P=0;
for i=1:k
   rou=TransData(i).rou;
   s01=abs(Pi(i,1)-Pmean);
   if s01<=sita
       fy01=(1-s01)*rou;
   else
       fy01=(1-s01)*rou*beta;
   end
    P=P+Pi(i,1)*fy01;
end
disp('差距容忍度')
sita
disp('衰减因子')
beta
disp('总交易次数')
N
disp('评价率')
LP
disp('卖家的信用度')
P
disp('考虑评价率的卖家的信用度')
Q=P*LP


 

关键函数 交易信息函数TransInf.m

function [TransData,N,LP]=TransInf(k,timeMin,timeMax,TnumberMin,TnumberMax,moneyMin,moneyMax,SEvaluategoodMin,SEvaluategoodMax,...
    SEvaluatemidMin,SEvaluatemidMax,noEvaluateRate,BEvaluateMin,BEvaluateMax)
%% 产生交易信息函数

%k=买家人数
%[timeMin,timeMax]=交易时间范围
%[TnumberMin,TnumberMax]=交易次数范围
%[moneyMin,moneyMax]=交易金额范围
%[SEvaluateMin,SEvaluateMax]=对卖家的好评率范围[0.7,0.9],0-0.7为好评,0.7-0.9为中,0.9-1为差,SEvaluategoodMin,SEvaluategoodMax,SEvaluatemidMin,SEvaluatemidMax
%noEvaluateRate=买家不评价的概率
%[BEvaluateMin,BMax]=买家自身的好评率范围

%% TransData结构体的结果定义
%TransData(i).B=i=第i个买家
%TransData(i).S=卖家,不要了
%TransData(i).T=第i次交易的时间
%TransData(i).M=第i次交易的金额
%TransData(i).R=第i次交易的评价值,好评则为1,中评则为0,差评则为一1
%TransData(i).rou=买家i自身的好评率
% N=总交易次数
%LP=评价率

T01=timeMin:timeMax;
L01=length(T01);
if L01<TnumberMax%
    error('请输入正确的参数,交易时间范围设置过小');
end

noEnumber=0;%
Enumber=0;%
for i=1:k%按买家循环
    %% --记录数据开始-------------
    TransData(i).B=i;
    TransData(i).S=1;
    % 产生交易时间
    index01=randperm(L01);
    state=0;
    iter=0;
    while state==0
        Tnumber=randi([TnumberMin TnumberMax],1,1);%产生交易次数
        if L01>=Tnumber
            time01 =index01(1:Tnumber);
            time=sort(time01);
            break;
        else
            state=0;
            iter=iter+1;
        end
        if iter>=10
            error('请输入正确的参数,交易时间范围设置过小');
        end
    end
    TransData(i).T=time;
    % 产生金额
    money=randi([moneyMin moneyMax],1,Tnumber);%产生交易金额,默认为整数
    TransData(i).M=money;%第i次交易的金额
    
    %% 好评率计算
    for j=1:Tnumber
        rnoE=rand;
        if rnoE>noEvaluateRate
            % 产生好评率
            rgood = SEvaluategoodMin + (SEvaluategoodMax-SEvaluategoodMin).*rand(1,1);%介于SEvaluategoodMax和SEvaluategoodMin之间
            % 产生中评率
            rmidle = SEvaluatemidMin + (SEvaluatemidMax-SEvaluatemidMin).*rand(1,1);%介于SEvaluatemidMi,nSEvaluatemidMax之间
            if rgood>rmidle
                error('对卖家的好评率范围SEvaluategoodMin和SEvaluategoodMax设置过大或者SEvaluatemidMin和SEvaluatemidMax过小,请重新设置');
            end
            r001=rand;%
            if (r001>=0)&&(r001<rgood);
                R01=1;
            end
            if (r001>=rgood)&&(r001<rmidle);
                R01=0;
            end
            if (r001>=rmidle)&&(r001<1);
                R01=-1;
            end
            Enumber=Enumber+1;%记录评价的交易
        else
            R01=0;
            noEnumber=noEnumber+1;%记录不评价的交易
        end
   
        if j==1%第一个交易直接赋值
            TransData(i).R=R01;
        else%其他交易放到后面
            TransData(i).R=[TransData(i).R, R01];
        end
    end
    TransData(i).rou=BEvaluateMin + (BEvaluateMax-BEvaluateMin).*rand(1,1);%
    %% --记录数据结束-------------
end
N=noEnumber+Enumber;
LP=Enumber/N;

main2.m 是研究最大交易额和信用度的关系

%% 研究最大交易额和信用度的关系
clc;close all;clear all;
sita=0.20; %差距容忍度
beta=0.85; %衰减因子
%% 产生交易信息
K=100:100:1000;
G=length(K);
Pcell=zeros(G,1);
Qcell=zeros(G,1);
for g=1:G
    k=200;%k=买家人数
    timeMin=1;%[timeMin,timeMax]=交易时间范围
    timeMax=100;%[timeMin,timeMax]=交易时间范围
    TnumberMin=1;%[TnumberMin,TnumberMax]=交易次数范围
    TnumberMax=80;%[TnumberMin,TnumberMax]=交易次数范围
    moneyMin=20;%[moneyMin,moneyMax]=交易金额范围
    moneyMax=K(g);%[moneyMin,moneyMax]=交易金额范围
    SEvaluategoodMin=0.9;%[SEvaluateMin,SEvaluateMax]=对卖家的好评率范围[0.7,0.9],0-0.7为好评,0.7-0.9为中,0.9-1为差
    SEvaluategoodMax=0.96;%[SEvaluateMin,SEvaluateMax]=对卖家的好评率范围[0.7,0.9],0-0.7为好评,0.7-0.9为中,0.9-1为差
    SEvaluatemidMin=0.98;
    SEvaluatemidMax=0.999;
    noEvaluateRate=0.2;%noEvaluateRate=买家不评价的概率
    BEvaluateMin=0.9;%[BEvaluateMin,BMax]=买家自身的好评率范围
    BEvaluateMax=0.99;%[BEvaluateMin,BMax]=买家自身的好评率范围
    [TransData,N,LP]=TransInf(k,timeMin,timeMax,TnumberMin,TnumberMax,moneyMin,moneyMax,SEvaluategoodMin,SEvaluategoodMax,...
        SEvaluatemidMin,SEvaluatemidMax,noEvaluateRate,BEvaluateMin,BEvaluateMax);%jisuan
    % N=总交易次数
    %k=买家人数
    %[timeMin,timeMax]=交易时间范围
    %[TnumberMin,TnumberMax]=交易次数范围
    %[moneyMin,moneyMax]=交易金额范围
    %[SEvaluateMin,SEvaluateMax]=对卖家的好评率范围[0.7,0.9],0-0.7为好评,0.7-0.9为中,0.9-1为差,SEvaluategoodMin,SEvaluategoodMax,SEvaluatemidMin,SEvaluatemidMax
    %noEvaluateRate=买家不评价的概率
    %[BEvaluateMin,BMax]=买家自身的好评率范围
    
    %TransData(i).B=i=第i个买家
    %TransData(i).S=卖家,不要了
    %TransData(i).T=第i次交易的时间
    %TransData(i).M=第i次交易的金额
    %TransData(i).R=第i次交易的评价值,好评则为1,中评则为0,差评则为一1
    %TransData(i).rou=买家自身的好评率
    %LP=评价率
    
    %%
    Pi=zeros(k,1);
    for i=1:k
        T=TransData(i).T;
        M=TransData(i).M;
        R=TransData(i).R;
        ysl=(T).*M;
        Pi(i,1)=sum(R.*ysl/sum(ysl));
    end
    
    Pmean=mean(Pi);
    
    P=0;
    for i=1:k
        rou=TransData(i).rou;
        s01=abs(Pi(i,1)-Pmean);
        if s01<=sita
            fy01=(1-s01)*rou;
        else
            fy01=(1-s01)*rou*beta;
        end
        P=P+Pi(i,1)*fy01;
    end
    Q=P*LP;
    Pcell(g,1)=P;
    Qcell(g,1)=Q;
end
figure;
plot(K,Pcell,'b-',K,Qcell,'r--');
legend('信用度','考虑评价率的信用度');
xlabel('交易金额上限');
ylabel('信用度');
title('信用度和交易金额上限关系曲线');


disp('差距容忍度')
sita
disp('衰减因子')
beta
disp('总交易次数')
N
disp('评价率')
LP
disp('卖家的信用度')
P
disp('考虑评价率的卖家的信用度')
Q


 

main3.m 研究买家不评价率对信用度影响

%% 研究买家不评价率对信用度影响
clc;close all;clear all;
sita=0.20; %差距容忍度
beta=0.85; %衰减因子
%% 产生交易信息
K=0.1:0.01:0.3;
G=length(K);
Pcell=zeros(G,1);
Qcell=zeros(G,1);
for g=1:G
    k=200;%k=买家人数
    timeMin=1;%[timeMin,timeMax]=交易时间范围
    timeMax=100;%[timeMin,timeMax]=交易时间范围
    TnumberMin=1;%[TnumberMin,TnumberMax]=交易次数范围
    TnumberMax=80;%[TnumberMin,TnumberMax]=交易次数范围
    moneyMin=20;%[moneyMin,moneyMax]=交易金额范围
    moneyMax=1000;%[moneyMin,moneyMax]=交易金额范围
    SEvaluategoodMin=0.9;%[SEvaluateMin,SEvaluateMax]=对卖家的好评率范围[0.7,0.9],0-0.7为好评,0.7-0.9为中,0.9-1为差
    SEvaluategoodMax=0.96;%[SEvaluateMin,SEvaluateMax]=对卖家的好评率范围[0.7,0.9],0-0.7为好评,0.7-0.9为中,0.9-1为差
    SEvaluatemidMin=0.98;
    SEvaluatemidMax=0.999;
    noEvaluateRate=K(g);%noEvaluateRate=买家不评价的概率
    BEvaluateMin=0.9;%[BEvaluateMin,BMax]=买家自身的好评率范围
    BEvaluateMax=0.99;%[BEvaluateMin,BMax]=买家自身的好评率范围
    [TransData,N,LP]=TransInf(k,timeMin,timeMax,TnumberMin,TnumberMax,moneyMin,moneyMax,SEvaluategoodMin,SEvaluategoodMax,...
        SEvaluatemidMin,SEvaluatemidMax,noEvaluateRate,BEvaluateMin,BEvaluateMax);%jisuan
    % N=总交易次数
    %k=买家人数
    %[timeMin,timeMax]=交易时间范围
    %[TnumberMin,TnumberMax]=交易次数范围
    %[moneyMin,moneyMax]=交易金额范围
    %[SEvaluateMin,SEvaluateMax]=对卖家的好评率范围[0.7,0.9],0-0.7为好评,0.7-0.9为中,0.9-1为差,SEvaluategoodMin,SEvaluategoodMax,SEvaluatemidMin,SEvaluatemidMax
    %noEvaluateRate=买家不评价的概率
    %[BEvaluateMin,BMax]=买家自身的好评率范围
    
    %TransData(i).B=i=第i个买家
    %TransData(i).S=卖家,不要了
    %TransData(i).T=第i次交易的时间
    %TransData(i).M=第i次交易的金额
    %TransData(i).R=第i次交易的评价值,好评则为1,中评则为0,差评则为一1
    %TransData(i).rou=买家自身的好评率
    %LP=评价率
    
    %%
    Pi=zeros(k,1);
    for i=1:k
        T=TransData(i).T;
        M=TransData(i).M;
        R=TransData(i).R;
        ysl=(T).*M;
        Pi(i,1)=sum(R.*ysl/sum(ysl));
    end
    
    Pmean=mean(Pi);
    
    P=0;
    for i=1:k
        rou=TransData(i).rou;
        s01=abs(Pi(i,1)-Pmean);
        if s01<=sita
            fy01=(1-s01)*rou;
        else
            fy01=(1-s01)*rou*beta;
        end
        P=P+Pi(i,1)*fy01;
    end
    Q=P*LP;
    Pcell(g,1)=P;
    Qcell(g,1)=Q;
end
figure;
plot(K,Pcell,'b-',K,Qcell,'r--');
legend('信用度','考虑评价率的信用度');
xlabel('买家不评价率');
ylabel('信用度');
title('信用度和买家不评价率关系曲线');


disp('差距容忍度')
sita
disp('衰减因子')
beta
disp('总交易次数')
N
disp('评价率')
LP
disp('卖家的信用度')
P
disp('考虑评价率的卖家的信用度')
Q


 

main4.m 研究交易次数对信用度影响

%% 研究交易次数对信用度影响
clc;close all;clear all;
sita=0.20; %差距容忍度
beta=0.85; %衰减因子
%% 产生交易信息
K=10:5:80;
G=length(K);
Pcell=zeros(G,1);
Qcell=zeros(G,1);
for g=1:G
    k=200;%k=买家人数
    timeMin=1;%[timeMin,timeMax]=交易时间范围
    timeMax=100;%[timeMin,timeMax]=交易时间范围
    TnumberMin=1;%[TnumberMin,TnumberMax]=交易次数范围
    TnumberMax=K(g);%[TnumberMin,TnumberMax]=交易次数范围
    moneyMin=20;%[moneyMin,moneyMax]=交易金额范围
    moneyMax=1000;%[moneyMin,moneyMax]=交易金额范围
    SEvaluategoodMin=0.9;%[SEvaluateMin,SEvaluateMax]=对卖家的好评率范围[0.7,0.9],0-0.7为好评,0.7-0.9为中,0.9-1为差
    SEvaluategoodMax=0.96;%[SEvaluateMin,SEvaluateMax]=对卖家的好评率范围[0.7,0.9],0-0.7为好评,0.7-0.9为中,0.9-1为差
    SEvaluatemidMin=0.98;
    SEvaluatemidMax=0.999;
    noEvaluateRate=0.2;%noEvaluateRate=买家不评价的概率
    BEvaluateMin=0.9;%[BEvaluateMin,BMax]=买家自身的好评率范围
    BEvaluateMax=0.99;%[BEvaluateMin,BMax]=买家自身的好评率范围
    [TransData,N,LP]=TransInf(k,timeMin,timeMax,TnumberMin,TnumberMax,moneyMin,moneyMax,SEvaluategoodMin,SEvaluategoodMax,...
        SEvaluatemidMin,SEvaluatemidMax,noEvaluateRate,BEvaluateMin,BEvaluateMax);%jisuan
    % N=总交易次数
    %k=买家人数
    %[timeMin,timeMax]=交易时间范围
    %[TnumberMin,TnumberMax]=交易次数范围
    %[moneyMin,moneyMax]=交易金额范围
    %[SEvaluateMin,SEvaluateMax]=对卖家的好评率范围[0.7,0.9],0-0.7为好评,0.7-0.9为中,0.9-1为差,SEvaluategoodMin,SEvaluategoodMax,SEvaluatemidMin,SEvaluatemidMax
    %noEvaluateRate=买家不评价的概率
    %[BEvaluateMin,BMax]=买家自身的好评率范围
    
    %TransData(i).B=i=第i个买家
    %TransData(i).S=卖家,不要了
    %TransData(i).T=第i次交易的时间
    %TransData(i).M=第i次交易的金额
    %TransData(i).R=第i次交易的评价值,好评则为1,中评则为0,差评则为一1
    %TransData(i).rou=买家自身的好评率
    %LP=评价率
    
    %%
    Pi=zeros(k,1);
    for i=1:k
        T=TransData(i).T;
        M=TransData(i).M;
        R=TransData(i).R;
        ysl=(T).*M;
        Pi(i,1)=sum(R.*ysl/sum(ysl));
    end
    
    Pmean=mean(Pi);
    
    P=0;
    for i=1:k
        rou=TransData(i).rou;
        s01=abs(Pi(i,1)-Pmean);
        if s01<=sita
            fy01=(1-s01)*rou;
        else
            fy01=(1-s01)*rou*beta;
        end
        P=P+Pi(i,1)*fy01;
    end
    Q=P*LP;
    Pcell(g,1)=P;
    Qcell(g,1)=Q;
end
figure;
plot(K,Pcell,'b-',K,Qcell,'r--');
legend('信用度','考虑评价率的信用度');
xlabel('交易次数');
ylabel('信用度');
title('信用度和交易次数关系曲线');


disp('差距容忍度')
sita
disp('衰减因子')
beta
disp('总交易次数')
N
disp('评价率')
LP
disp('卖家的信用度')
P
disp('考虑评价率的卖家的信用度')
Q

程序结果:

差距容忍度

sita =

    0.2000

衰减因子

beta =

    0.8500

总交易次数

N =

        7677

评价率

LP =

    0.8032

卖家的信用度

P =

  126.8858

考虑评价率的卖家的信用度

Q =

  101.9120

>> 

需要讨论的可以加Q1579325979讨论

相关文章:

信用评价研究MATLAB仿真代码

信用评价是各种店铺卖家分析买家信用行为的重要内容, 本文给出随机仿真代码模拟实际交易过程的信用评价. 主要研究内容有: (1)研究最大交易额和信用度的关系 (2)研究买家不评价率对信用度影响 (3)研究交易次数对信用度影响 MATLAB程序如下: 主程序main.m %% clc;close a…...

网络安全产品之认识防毒墙

在互联网发展的初期&#xff0c;网络结构相对简单&#xff0c;病毒通常利用操作系统和软件程序的漏洞发起攻击&#xff0c;厂商们针对这些漏洞发布补丁程序。然而&#xff0c;并不是所有终端都能及时更新这些补丁&#xff0c;随着网络安全威胁的不断升级和互联网的普及&#xf…...

android 防抖工具类,经纬度检查工具类

一&#xff1a;点击事件防抖工具类&#xff1a; public abstract class ThrottleClickListener implements View.OnClickListener {private long clickLastTimeKey 0;private final long thresholdMillis 500;//millisecondsOverridepublic void onClick(View v) {long curr…...

PgSQL - 17新特性 - 块级别增量备份

PgSQL - 17新特性 - 块级别增量备份 PgSQL可通过pg_basebackup进行全量备份。在构建复制关系时&#xff0c;创建备机时需要通过pg_basebackup全量拉取一个备份&#xff0c;形成一个mirror。但很多场景下&#xff0c;我们往往不需要进行全量备份/恢复&#xff0c;数据量特别大的…...

Vue3setup()的非语法糖和语法糖的用法

1、setup()的语法糖的用法 script标签上写setup属性&#xff0c;不需要export default {} setup() 都可以省 创建每个属性或方法时也不需要return 导入某个组件时也不需要注册 <script setup > // script标签上写setup属性&#xff0c;不需要export default {} set…...

HTTP状态信息

1xx: 信息 消息:描述:100 Continue服务器仅接收到部分请求&#xff0c;但是一旦服务器并没有拒绝该请求&#xff0c;客户端应该继续发送其余的请求。101 Switching Protocols服务器转换协议&#xff1a;服务器将遵从客户的请求转换到另外一种协议。 2xx: 成功 消息:描述:200…...

CSS之边框样式

让我为大家介绍一下边框样式吧&#xff01;如果大家想更进一步了解边框的使用&#xff0c;可以阅读这一篇文章&#xff1a;CSS边框border 属性描述none没有边框,即忽略所有边框的宽度(默认值)solid边框为单实线dashed边框为虚线dotted边框为点线double边框为双实线 代码演示&…...

k8s-helm

Helm: 什么是helm,在没有这个heml之前&#xff0c;deployment service ingress的作用就是通过打包的方式&#xff0c;把deployment service ingress这些打包在一块&#xff0c;一键式的部署服务&#xff0c;类似于yum 官方提供的一个类似于安全仓库的功能&#xff0c;可以实现…...

黑马程序员JavaWeb开发|Maven高级

一、分模块设计与开发 分模块设计&#xff1a; 将项目按照功能拆分成若干个子模块&#xff0c;方便项目的管理维护、扩展&#xff0c;也方便模块间的相互调用&#xff0c;资源共享。 注意&#xff1a;分模块开发需要先对模块功能进行设计&#xff0c;再进行编码。不会先将工…...

【经验分享】MAC系统安装R和Rstudio(保姆级教程)安装下载只需5min

最近换了Macbook的Air电脑&#xff0c;自然要换很多新软件啦&#xff0c;首先需要安装的就是R和Rstudio啦&#xff0c;网上的教程很多很繁琐&#xff0c;为此我特意总结了最简单实用的安装方式: 一、先R后Rstudio 二、R下载 下载网址&#xff1a;https://cran.r-project.org …...

探索设计模式的魅力:“感受单例模式的力量与神秘” - 掌握编程的王牌技巧

在软件开发的赛场上&#xff0c;单例模式以其独特的魅力长期占据着重要的地位。作为设计模式中的一员&#xff0c;它在整个软件工程的棋盘上扮演着关键性角色。本文将带你深入探索单例模式的神秘面纱&#xff0c;从历史渊源到现代应用&#xff0c;从基础实现到高级技巧&#xf…...

SpringCloud Aliba-Seata【上】-从入门到学废【7】

目录 &#x1f9c2;.Seata是什么 &#x1f32d;2.Seata术语表 &#x1f953;3.处理过程 &#x1f9c8;4.下载 &#x1f37f;5.修改相关配置 &#x1f95e;6.启动seata 1.Seata是什么 Seata是一款开源的分布式事务解决方案&#xff0c;致力于在微服务架构下提供高性能…...

C# Cad2016二次开发选择csv导入信息(七)

//选择csv导入信息 [CommandMethod("setdata")] //本程序在AutoCAD的快捷命令是"DLLLOAD" public void setdata() {Microsoft.Win32.OpenFileDialog dlg new Microsoft.Win32.OpenFileDialog();dlg.DefaultExt ".csv";// Display OpenFileDial…...

[陇剑杯 2021]日志分析

[陇剑杯 2021]日志分析 题目做法及思路解析&#xff08;个人分享&#xff09; 问一&#xff1a;单位某应用程序被攻击&#xff0c;请分析日志&#xff0c;进行作答&#xff1a; 网络存在源码泄漏&#xff0c;源码文件名是_____________。(请提交带有文件后缀的文件名&…...

Java面试汇总——jvm篇

目录 JVM的组成&#xff1a; 1、JVM 概述(⭐⭐⭐⭐) 1.1 JVM是什么&#xff1f; 1.2 JVM由哪些部分组成&#xff0c;运行流程是什么&#xff1f; 2、什么是程序计数器&#xff1f;(⭐⭐⭐⭐) 3、介绍一下Java的堆(⭐⭐⭐⭐) 4、虚拟机栈(⭐⭐⭐⭐) 4.1 什么是虚拟机栈&…...

数据结构:完全二叉树(递归实现)

如果完全二叉树的深度为h&#xff0c;那么除了第h层外&#xff0c;其他层的节点个数都是满的&#xff0c;第h层的节点都靠左排列。 完全二叉树的编号方法是从上到下&#xff0c;从左到右&#xff0c;根节点为1号节点&#xff0c;设完全二叉树的节点数为sum&#xff0c;某节点编…...

RK3568 移植Ubuntu

使用ubuntu-base构建根文件系统 1、到ubuntu官网获取 ubuntu-base-18.04.5-base-arm64.tar.gz Ubuntu Base 18.04.5 LTS (Bionic Beaver) 2、将获取的文件拷贝到ubuntu虚拟机,新建目录,并解压 mkdir ubuntu_rootfs sudo tar -xpf u...

C++大学教程(第九版)6.34猜数字游戏 6.35 修改的猜数字游戏

文章目录 6.34题目代码运行截图6.35题目代码运行截图 6.34题目 猜数字游戏)编写一个程序&#xff0c;可以玩“猜数字”的游戏。具体描述如下:程序在1~1000之间的整数中随机选择需要被猜的数&#xff0c;然后显示: 代码 #include <iostream> #include <cstdlib>…...

【立创EDA-PCB设计基础】5.布线设计规则设置

前言&#xff1a;本文详解布线前的设计规则设置。经过本专栏中的【立创EDA-PCB设计基础】前几节已经完成了布局&#xff0c;接下来开始进行布线&#xff0c;在布线之前&#xff0c;要设置设计规则。 目录 1.间距设置 1.1 安全间距设置 1.2 其它间距设置 2.物理设置 2.1 导…...

ElementUI简介以及相关操作

ElementUI是一套基于Vue.js的桌面端组件库&#xff0c;提供了丰富的组件帮助开发人员快速构建功能强大、风格统一的页面。以下是ElementUI的简介以及相关操作&#xff1a; 简介&#xff1a;ElementUI是一套为开发者、设计师和产品经理准备的基于Vue 2.0的桌面端组件库&#xff…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

Java 语言特性(面试系列2)

一、SQL 基础 1. 复杂查询 &#xff08;1&#xff09;连接查询&#xff08;JOIN&#xff09; 内连接&#xff08;INNER JOIN&#xff09;&#xff1a;返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)

概述 在 Swift 开发语言中&#xff0c;各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过&#xff0c;在涉及到多个子类派生于基类进行多态模拟的场景下&#xff0c;…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面

代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口&#xff08;适配服务端返回 Token&#xff09; export const login async (code, avatar) > {const res await http…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案&#xff0c;允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日&#xff0c;2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席&#xff0c;并作《智能体在安全领域的应用实践》主题演讲&#xff0c;分享了在智能体在安全领域的突破性实践。他指出&#xff0c;百度通过将安全能力…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题&#xff0c;前来答题。 每个人对刷题理解是不同&#xff0c;有的人是看了writeup就等于刷了&#xff0c;有的人是收藏了writeup就等于刷了&#xff0c;有的人是跟着writeup做了一遍就等于刷了&#xff0c;还有的人是独立思考做了一遍就等于刷了。…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)

Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败&#xff0c;具体原因是客户端发送了密码认证请求&#xff0c;但Redis服务器未设置密码 1.为Redis设置密码&#xff08;匹配客户端配置&#xff09; 步骤&#xff1a; 1&#xff09;.修…...