当前位置: 首页 > news >正文

自然语言NLP学习

2-7 门控循环单元(GRU)_哔哩哔哩_bilibili

GRU  LSTM

双向RNN

CNN 卷积神经网络

输入层  转化为向量表示

dropout

ppl

标量

在物理学和数学中,标量(Scalar)是一个只有大小、没有方向的量。它只用一个数值就可以完全描述,且满足交换律。例如,质量、温度、时间、体积、密度、功、能量等都是标量。

在向量代数中,标量与向量是相对的概念,标量可以与向量相乘,从而改变向量的长度但不改变其方向。例如,在三维空间中,如果一个向量的长度为3,一个标量为2,那么这个标量乘以向量的结果将得到一个长度为6,方向不变的新向量。

注意力分数

隐向量

隐向量(Latent Vector)是机器学习和深度学习中一个重要的概念,特别是在自然语言处理、推荐系统、图像识别等领域。隐向量是用来表示复杂数据的一种低维实数向量,它通过训练学习到的,并试图捕捉原始高维数据中的潜在结构和语义信息。

在推荐系统中:

  • 隐向量通常用来表示用户和物品(如电影、音乐等),每个用户和每件物品都被映射到一个固定维度的向量空间中。
  • 例如,在因子分解机(FM,Factorization Machines)模型中,各个特征(比如用户ID或商品ID)对应的隐向量可以通过矩阵分解得到,这些隐向量的内积可以用来预测用户对商品的评分或者偏好。

在自然语言处理中:

  • 单词或文档也可以用隐向量来表示,这种表示方法常被称为词嵌入(Word Embeddings),如Word2Vec、GloVe等模型生成的向量。
  • 这些隐向量可以捕获单词之间的语义相似性,使得在向量空间中距离相近的单词具有类似的含义。

在深度学习架构中:

  • 在神经网络中,Embedding层就是用来将离散的高维输入(如one-hot编码)转换为连续的低维隐向量,以便进行后续的计算和模式挖掘。

总的来说,隐向量是一种压缩和抽象的表示形式,它有助于模型理解和处理高维稀疏数据,并能够发现数据内部隐藏的模式和联系。

softmax函数是一种在机器学习和深度学习中广泛使用的归一化指数函数,主要用于多分类问题的输出层计算预测类别概率分布。

激活函数

注意力机制解决信息瓶颈问题

Transformer

BPE

交叉熵

正则化

加权平均是一种统计方法,用于计算一组数值的平均值时,考虑到每个数值的重要性(权重)不同。在普通平均数中,所有数据点都同等重要,而在加权平均中,每个数据点有一个与其对应的权重值,这个权重反映了该数据点在最终结果中的相对影响程度。

加权平均的计算公式为:

加权平均数=∑(每个数据值×对应权重)∑(所有权重)加权平均数=∑(所有权重)∑(每个数据值×对应权重)​

例如,在学校教育场景中,一个学生的学期总评成绩可能由平时测验、期中考试和期末考试的成绩按不同比例(权重)综合得出:

  • 平时测验:80 分,权重 20%
  • 期中考试:90 分,权重 30%
  • 期末考试:95 分,权重 50%

那么,该学生的学期总评成绩可以通过以下步骤计算:

学期总评成绩=(80×0.2)+(90×0.3)+(95×0.5)0.2+0.3+0.5学期总评成绩=0.2+0.3+0.5(80×0.2)+(90×0.3)+(95×0.5)​

此外,在财务领域,加权平均法常用于库存管理,计算存货的单位成本。例如,考虑一段时间内多次购入商品的情况,每次购入的数量和单价不同,这时会根据各批次进货的数量(作为权重)和其相应的单价来计算整个库存的平均单位成本。

3-13 预训练语言模型--PLM介绍_哔哩哔哩_bilibili

相关文章:

自然语言NLP学习

2-7 门控循环单元(GRU)_哔哩哔哩_bilibili GRU LSTM 双向RNN CNN 卷积神经网络 输入层 转化为向量表示 dropout ppl 标量 在物理学和数学中,标量(Scalar)是一个只有大小、没有方向的量。它只用一个数值就可以完全…...

js实现填涂画板

文章目录 1实现效果2 实现代码 凑个数,存粹是好玩儿,哈哈... 1实现效果 最上方一栏: 左侧是颜色按钮,点击选中颜色, 中间是功能按钮,重置颜色、清空画板、回退、涂改液(填涂色置为白色&#xff…...

springboot农机电招平台源码和论文

随着农机电招行业的不断发展,农机电招在现实生活中的使用和普及,农机电招行业成为近年内出现的一个新行业,并且能够成为大群众广为认可和接受的行为和选择。设计农机电招平台的目的就是借助计算机让复杂的销售操作变简单,变高效。…...

TensorFlow 深度学习 开发环境搭建 全教程

PyTorch 深度学习 开发环境搭建 全教程 TensorFlow 深度学习 开发环境搭建 全教程 1、指定清华源命令 -i https://pypi.tuna.tsinghua.edu.cn/simple2、conda安装 这是AI开发环境的全家桶,官网下载链接Anaconda | Start Coding Immediately 尽量不要选择太新版本…...

Qt —— QCharts之曲线示波器(附源码)

示例效果 介绍 Qt5.7 版本后 Qt Charts 的发布。Qt Charts可以创建时尚的、交互式的、以数据为中心的用户界面。Qt Charts使用Qt Charts来简化集成。图表组件可以用作或对象或QML类型。 该类管理不同类型的系列和其他图表相关对象(如图例和轴)的图形表示形式。是一个可以在 .…...

【秒剪】如何更换视频画幅比例以及画面背景?

Step1:点击上方显示的画幅比例 Step2:在下方选择合适的视频画幅或更换画面背景 Step3:点击上方【填充方式】 Step4:选择合适的填充方式即可 Step5:点击这里即可自定义视频背景...

HarmonyOS鸿蒙学习笔记(23)监听Wifi状态变化

监听Wifi状态变化 前言创建接收状态变化的Bean对象创建订阅者和订阅事件参考资料: 前言 本篇博文通过动态订阅公共事件来说明怎么使用HarmonyOS监听Wifi状态的变化。关于动态订阅公共事件的概念,官网有详细说明,再次就不在赘述。博文相关项目…...

mac 安装配置oh-my-zsh

1. 安装brew /bin/zsh -c "$(curl -fsSL https://gitee.com/cunkai/HomebrewCN/raw/master/Homebrew.sh)" 按照步骤安装即可 安装完成查看版本 brew -v 2. 安装zsh brew install zsh 查看版本 zsh --version 3. 安装oh-my-zsh github官网链…...

[pytorch入门] 2. tensorboard

tensorboard简介 TensorBoard 是一组用于数据可视化的工具。它包含在流行的开源机器学习库 Tensorflow 中.但是也可以独立安装&#xff0c;服务Pytorch等其他的框架 可以常常用来观察训练过程中每一阶段如何输出的 安装pip install tensorboard启动tensorboard --logdir<d…...

基于卡尔曼滤波的平面轨迹优化

文章目录 概要卡尔曼滤波代码主函数代码CMakeLists.txt概要 在进行目标跟踪时,算法实时测量得到的目标平面位置,是具有误差的,连续观测,所形成的轨迹如下图所示,需要对其进行噪声滤除。这篇博客将使用卡尔曼滤波,对轨迹进行优化。 优化的结果为黄色线。 卡尔曼滤波代码…...

GBASE南大通用分享如何更新嵌套的集合

如果您想要更新集合的集合&#xff0c;则必须声明游标来访问外层的集合&#xff0c;然后声明嵌套的游标来 访问内层的集合。 例如&#xff0c;假设 manager 表有一附加的列 scores&#xff0c;它包含一其元素类型为整数的 MULTISET 的 LIST&#xff0c;如下图所示。 更新集合…...

Maya------插入循环边

11.maya 常用建模命令1.插入循环边 多切割_哔哩哔哩_bilibili 与边相对距离 逐渐变化...

Nginx_入门

系列文章目录 提示&#xff1a;这里可以添加系列文章的所有文章的目录&#xff0c;目录需要自己手动添加 Nginx_入门 提示&#xff1a;写完文章后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 系列文章目录前言一、Nginx概述二、Nginx的应用…...

坚持刷题 | 平衡二叉树

文章目录 题目考察点代码实现实现总结对实现进一步改进扩展提问 坚持刷题&#xff0c;老年痴呆追不上我&#xff0c;今天继续二叉树&#xff1a;平衡二叉树 题目 110.平衡二叉树 考察点 递归能力&#xff1a; 能否使用递归来解决问题。树的基本操作&#xff1a;能否正确地访…...

江大白 | 万字长文图解Numpy教程,看这一篇就够了!

本文来源公众号“江大白”&#xff0c;仅用于学术分享&#xff0c;侵权删&#xff0c;干货满满&#xff0c;有超级详细的图解。 原文链接&#xff1a;万字长文图解Numpy教程&#xff0c;看这一篇就够了&#xff01; (qq.com) 以下文章来源于博客&#xff1a;Medium 作者&…...

数据结构——静态链表

1.定义&#xff1a; &#xff08;1&#xff09;单链表&#xff1a;各个结点散落在内存中的各个角落&#xff0c;每个结点有指向下一个节点的指针(下一个结点在内存 中的地址); &#xff08;2&#xff09;静态链表&#xff1a;用数组的方式来描述线性表的链式存储结构: 分配一…...

C++ 知识列表【图】

举例C的设计模式和智能指针 当谈到 C 的设计模式时&#xff0c;以下是一些常见的设计模式&#xff1a; 工厂模式&#xff08;Factory Pattern&#xff09;&#xff1a;用于创建对象的模式&#xff0c;隐藏了对象的具体实现细节&#xff0c;只暴露一个公共接口来创建对象。 单例…...

系统登录的时候的密码如何做到以加密的形式进行登录【java.security包下的api】工具类。

/** description: 将普通的publicKey转化得到一个RSAPublicKey* author: zkw* date: 2024/1/24 16:17* param: publicKey 普通的publicKey* return: RSAPublicKey 得到一个新的RSAPublicKey**/public static RSAPublicKey getPublicKey(String publicKey) throws NoSuchAlgorit…...

java基础学习: 什么是泛型的类型擦除

文章目录 一、什么是泛型2、泛型编译前和编译后对比3、泛型的优点&#xff08;1&#xff09;提高了代码的复用性和可读性&#xff08;2&#xff09;提高了代码的安全性 二、泛型的定义1、泛型类2、泛型接口3、泛型方法 三、泛型通配符1、&#xff1f;和T有什么区别2、通配符的分…...

Vue+OpenLayers7入门到实战:在地图上添加缩放控件、比例尺控件和鼠标经纬度位置显示控件

返回《Vue+OpenLayers7》专栏目录:Vue+OpenLayers7 前言 本章主要介绍如何使用OpenLayers7在地图上添加地图缩放控件,比例尺显示控件和鼠标经纬度位置展示控件这三个Control控件。 二、依赖和使用 "ol": "7.5.2"使用npm安装依赖npm install ol@7.5.…...

基于算法竞赛的c++编程(28)结构体的进阶应用

结构体的嵌套与复杂数据组织 在C中&#xff0c;结构体可以嵌套使用&#xff0c;形成更复杂的数据结构。例如&#xff0c;可以通过嵌套结构体描述多层级数据关系&#xff1a; struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

JavaScript 中的 ES|QL:利用 Apache Arrow 工具

作者&#xff1a;来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗&#xff1f;了解下一期 Elasticsearch Engineer 培训的时间吧&#xff01; Elasticsearch 拥有众多新功能&#xff0c;助你为自己…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

剑指offer20_链表中环的入口节点

链表中环的入口节点 给定一个链表&#xff0c;若其中包含环&#xff0c;则输出环的入口节点。 若其中不包含环&#xff0c;则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

Java求职者面试指南:计算机基础与源码原理深度解析

Java求职者面试指南&#xff1a;计算机基础与源码原理深度解析 第一轮提问&#xff1a;基础概念问题 1. 请解释什么是进程和线程的区别&#xff1f; 面试官&#xff1a;进程是程序的一次执行过程&#xff0c;是系统进行资源分配和调度的基本单位&#xff1b;而线程是进程中的…...

Web中间件--tomcat学习

Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机&#xff0c;它可以执行Java字节码。Java虚拟机是Java平台的一部分&#xff0c;Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...

webpack面试题

面试题&#xff1a;webpack介绍和简单使用 一、webpack&#xff08;模块化打包工具&#xff09;1. webpack是把项目当作一个整体&#xff0c;通过给定的一个主文件&#xff0c;webpack将从这个主文件开始找到你项目当中的所有依赖文件&#xff0c;使用loaders来处理它们&#x…...

深度解析:etcd 在 Milvus 向量数据库中的关键作用

目录 &#x1f680; 深度解析&#xff1a;etcd 在 Milvus 向量数据库中的关键作用 &#x1f4a1; 什么是 etcd&#xff1f; &#x1f9e0; Milvus 架构简介 &#x1f4e6; etcd 在 Milvus 中的核心作用 &#x1f527; 实际工作流程示意 ⚠️ 如果 etcd 出现问题会怎样&am…...

EEG-fNIRS联合成像在跨频率耦合研究中的创新应用

摘要 神经影像技术对医学科学产生了深远的影响&#xff0c;推动了许多神经系统疾病研究的进展并改善了其诊断方法。在此背景下&#xff0c;基于神经血管耦合现象的多模态神经影像方法&#xff0c;通过融合各自优势来提供有关大脑皮层神经活动的互补信息。在这里&#xff0c;本研…...