当前位置: 首页 > news >正文

webassembly003 TTS BARK.CPP

TTS task

  • TTS(Text-to-Speech)任务是一种自然语言处理(NLP)任务,其中模型的目标是将输入的文本转换为声音,实现自动语音合成。具体来说,模型需要理解输入的文本并生成对应的语音输出,使得合成的语音听起来自然而流畅,类似于人类语音的表达方式。

Bark

  • Bark(https://github.com/suno-ai/bark) 是由 Suno 创建的基于转换器的文本到音频模型。Bark 可以生成高度逼真的多语言语音以及其他音频,包括音乐、背景噪音和简单的音效。该模型还可以产生非语言交流,如大笑、叹息和哭泣。为了支持研究社区,我们提供了对预训练模型检查点的访问,这些检查点已准备好进行推理并可用于商业用途。

bark.cpp

  • https://github.com/PABannier/bark.cpp

编译

$mkdir build
$cd build
$cmake ..
-- The C compiler identification is GNU 9.5.0
-- The CXX compiler identification is GNU 9.5.0
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working C compiler: /usr/bin/cc - skipped
-- Detecting C compile features
-- Detecting C compile features - done
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Check for working CXX compiler: /usr/bin/c++ - skipped
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Looking for pthread.h
-- Looking for pthread.h - found
-- Performing Test CMAKE_HAVE_LIBC_PTHREAD
-- Performing Test CMAKE_HAVE_LIBC_PTHREAD - Success
-- Found Threads: TRUE  
-- CMAKE_SYSTEM_PROCESSOR: x86_64
-- x86 detected
-- Linux detected
-- Configuring done
-- Generating done
-- Build files have been written to: /home/pdd/le/bark.cpp/build
$cmake --build . --config Release
[  7%] Building C object ggml/src/CMakeFiles/ggml.dir/ggml.c.o
[ 14%] Building C object ggml/src/CMakeFiles/ggml.dir/ggml-alloc.c.o
[ 21%] Linking C static library libggml.a
[ 21%] Built target ggml
[ 28%] Building CXX object CMakeFiles/bark.cpp.dir/bark.cpp.o
[ 42%] Linking CXX static library libbark.cpp.a
[ 42%] Built target bark.cpp
[ 50%] Building CXX object examples/main/CMakeFiles/main.dir/main.cpp.o
[ 57%] Linking CXX executable ../../bin/main
[ 57%] Built target main
[ 64%] Building CXX object examples/server/CMakeFiles/server.dir/server.cpp.o
[ 71%] Linking CXX executable ../../bin/server
[ 71%] Built target server
[ 78%] Building CXX object examples/quantize/CMakeFiles/quantize.dir/quantize.cpp.o
[ 85%] Linking CXX executable ../../bin/quantize
[ 85%] Built target quantize
[ 92%] Building CXX object tests/CMakeFiles/test-tokenizer.dir/test-tokenizer.cpp.o
[100%] Linking CXX executable ../bin/test-tokenizer
[100%] Built target test-tokenizer

权重下载与转换

$cd ../
# text_2.pt, coarse_2.pt, fine_2.pt,https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th
$python3 download_weights.py --download-dir ./models
# convert the model to ggml format
$python3 convert.py   --dir-model ./models --codec-path ./models --vocab-path ./ggml_weights/ --out-dir ./ggml_weights/
$ ls -ahl ./models/
总用量 13G
drwxrwxr-x  2 pdd pdd 4.0K Jan 29 08:22 .
drwxrwxr-x 13 pdd pdd 4.0K Jan 29 06:50 ..
-rwxrwxrwx  1 pdd pdd 3.7G Jan 29 07:34 coarse_2.pt
-rw-rw-r--  1 pdd pdd  89M Jan 29 07:29 encodec_24khz-d7cc33bc.th
-rwxrwxrwx  1 pdd pdd 3.5G Jan 29 07:53 fine_2.pt
-rwxrwxrwx  1 pdd pdd 5.0G Jan 29 07:22 text_2.pt
$ ls -ahl ./ggml_weights/
总用量 4.2G
drwxrwxr-x  2 pdd pdd 4.0K Jan 29 08:34 .
drwxrwxr-x 13 pdd pdd 4.0K Jan 29 06:50 ..
-rw-rw-r--  1 pdd pdd 1.3M Jan 29 08:33 ggml_vocab.bin
-rw-rw-r--  1 pdd pdd 1.3G Jan 29 08:34 ggml_weights_coarse.bin
-rw-rw-r--  1 pdd pdd  45M Jan 29 08:34 ggml_weights_codec.bin
-rw-rw-r--  1 pdd pdd 1.2G Jan 29 08:34 ggml_weights_fine.bin
-rw-rw-r--  1 pdd pdd 1.7G Jan 29 08:33 ggml_weights_text.bin
-rw-rw-r--  1 pdd pdd 973K Jan 29 05:23 vocab.txt
$ ./main -m ./ggml_weights/ -p "this is an audio"

运行

$ ./build/bin/main -h
usage: ./build/bin/main [options]options:-h, --help            show this help message and exit-t N, --threads N     number of threads to use during computation (default: 4)-s N, --seed N        seed for random number generator (default: 0)-p PROMPT, --prompt PROMPTprompt to start generation with (default: random)-m FNAME, --model FNAMEmodel path (default: /home/pdd/le/bark.cpp/ggml_weights)-o FNAME, --outwav FNAMEoutput generated wav (default: output.wav)
$ ./build/bin/main -m ./ggml_weights/ -p "this is an audio"
bark_load_model_from_file: loading model from './ggml_weights/'
bark_load_model_from_file: reading bark text model
gpt_model_load: n_in_vocab  = 129600
gpt_model_load: n_out_vocab = 10048
gpt_model_load: block_size  = 1024
gpt_model_load: n_embd      = 1024
gpt_model_load: n_head      = 16
gpt_model_load: n_layer     = 24
gpt_model_load: n_lm_heads  = 1
gpt_model_load: n_wtes      = 1
gpt_model_load: ftype       = 0
gpt_model_load: qntvr       = 0
gpt_model_load: ggml tensor size = 304 bytes
gpt_model_load: ggml ctx size = 1894.87 MB
gpt_model_load: memory size =   192.00 MB, n_mem = 24576
gpt_model_load: model size  =  1701.69 MB
bark_load_model_from_file: reading bark vocabbark_load_model_from_file: reading bark coarse model
gpt_model_load: n_in_vocab  = 12096
gpt_model_load: n_out_vocab = 12096
gpt_model_load: block_size  = 1024
gpt_model_load: n_embd      = 1024
gpt_model_load: n_head      = 16
gpt_model_load: n_layer     = 24
gpt_model_load: n_lm_heads  = 1
gpt_model_load: n_wtes      = 1
gpt_model_load: ftype       = 0
gpt_model_load: qntvr       = 0
gpt_model_load: ggml tensor size = 304 bytes
gpt_model_load: ggml ctx size = 1443.87 MB
gpt_model_load: memory size =   192.00 MB, n_mem = 24576
gpt_model_load: model size  =  1250.69 MBbark_load_model_from_file: reading bark fine model
gpt_model_load: n_in_vocab  = 1056
gpt_model_load: n_out_vocab = 1056
gpt_model_load: block_size  = 1024
gpt_model_load: n_embd      = 1024
gpt_model_load: n_head      = 16
gpt_model_load: n_layer     = 24
gpt_model_load: n_lm_heads  = 7
gpt_model_load: n_wtes      = 8
gpt_model_load: ftype       = 0
gpt_model_load: qntvr       = 0
gpt_model_load: ggml tensor size = 304 bytes
gpt_model_load: ggml ctx size = 1411.25 MB
gpt_model_load: memory size =   192.00 MB, n_mem = 24576
gpt_model_load: model size  =  1218.26 MBbark_load_model_from_file: reading bark codec model
encodec_model_load: model size    =   44.32 MBbark_load_model_from_file: total model size  =  4170.64 MBbark_tokenize_input: prompt: 'this is an audio'
bark_tokenize_input: number of tokens in prompt = 513, first 8 tokens: 20579 20172 20199 33733 129595 129595 129595 129595 
bark_forward_text_encoder: ...........................................................................................................bark_print_statistics: mem per token =     4.81 MB
bark_print_statistics:   sample time =    16.03 ms / 109 tokens
bark_print_statistics:  predict time =  9644.73 ms / 87.68 ms per token
bark_print_statistics:    total time =  9663.29 msbark_forward_coarse_encoder: ...................................................................................................................................................................................................................................................................................................................................bark_print_statistics: mem per token =     8.53 MB
bark_print_statistics:   sample time =     4.43 ms / 324 tokens
bark_print_statistics:  predict time = 52071.64 ms / 160.22 ms per token
bark_print_statistics:    total time = 52080.24 msggml_new_object: not enough space in the context's memory pool (needed 4115076720, available 4112941056)
段错误 (核心已转储)
  • 一开始以为是内存不足,去增加了虚拟内存,但仍然报错
$ sudo dd if=/dev/zero of=swapfile bs=1024 count=10000000
记录了10000000+0 的读入
记录了10000000+0 的写出
10240000000字节(10 GB,9.5 GiB)已复制,55.3595 s,185 MB/s
$ sudo chmod 600 ./swapfile  # delete the swapfile if you dont need it
$ sudo mkswap -f ./swapfile
正在设置交换空间版本 1,大小 = 9.5 GiB (10239995904  个字节)
无标签, UUID=f3e2a0be-b880-48da-b598-950b7d69f94f
$ sudo swapon ./swapfile
$ free -mtotal        used        free      shared  buff/cache   available
内存:      15731        6441         307        1242        8982        7713
交换:      11813        2047        9765$ ./build/bin/main -m ./ggml_weights/ -p "this is an audio"
ggml_new_object: not enough space in the context's memory pool (needed 4115076720, available 4112941056)
  • 去看了报错的函数,应该不是内存的原因
static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {// always insert objects at the end of the context's memory poolstruct ggml_object * obj_cur = ctx->objects_end;const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;const size_t cur_end  = cur_offs + cur_size;// align to GGML_MEM_ALIGNsize_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);char * const mem_buffer = ctx->mem_buffer;struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",__func__, cur_end + size_needed, ctx->mem_size);assert(false);return NULL;}*obj_new = (struct ggml_object) {.offs = cur_end + GGML_OBJECT_SIZE,.size = size_needed,.next = NULL,.type = type,};ggml_assert_aligned(mem_buffer + obj_new->offs);if (obj_cur != NULL) {obj_cur->next = obj_new;} else {// this is the first object in this contextctx->objects_begin = obj_new;}ctx->objects_end = obj_new;//printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);return obj_new;
}
  • 然后找到了https://github.com/PABannier/bark.cpp/issues/122
    在这里插入图片描述
$ cd bark.cpp/
$ git checkout -f 07e651618b3a8a27de3bfa7f733cdb0aa8f46b8a
HEAD 目前位于 07e6516 ENH Decorrelate fine GPT graph (#111)
  • 运行成功
/home/pdd/le/bark.cpp/cmake-build-debug/bin/main
bark_load_model_from_file: loading model from '/home/pdd/le/bark.cpp/ggml_weights'
bark_load_model_from_file: reading bark text model
gpt_model_load: n_in_vocab  = 129600
gpt_model_load: n_out_vocab = 10048
gpt_model_load: block_size  = 1024
gpt_model_load: n_embd      = 1024
gpt_model_load: n_head      = 16
gpt_model_load: n_layer     = 24
gpt_model_load: n_lm_heads  = 1
gpt_model_load: n_wtes      = 1
gpt_model_load: ftype       = 0
gpt_model_load: qntvr       = 0
gpt_model_load: ggml tensor size = 272 bytes
gpt_model_load: ggml ctx size = 1894.87 MB
gpt_model_load: memory size =   192.00 MB, n_mem = 24576
gpt_model_load: model size  =  1701.69 MB
bark_load_model_from_file: reading bark vocabbark_load_model_from_file: reading bark coarse model
gpt_model_load: n_in_vocab  = 12096
gpt_model_load: n_out_vocab = 12096
gpt_model_load: block_size  = 1024
gpt_model_load: n_embd      = 1024
gpt_model_load: n_head      = 16
gpt_model_load: n_layer     = 24
gpt_model_load: n_lm_heads  = 1
gpt_model_load: n_wtes      = 1
gpt_model_load: ftype       = 0
gpt_model_load: qntvr       = 0
gpt_model_load: ggml tensor size = 272 bytes
gpt_model_load: ggml ctx size = 1443.87 MB
gpt_model_load: memory size =   192.00 MB, n_mem = 24576
gpt_model_load: model size  =  1250.69 MBbark_load_model_from_file: reading bark fine model
gpt_model_load: n_in_vocab  = 1056
gpt_model_load: n_out_vocab = 1056
gpt_model_load: block_size  = 1024
gpt_model_load: n_embd      = 1024
gpt_model_load: n_head      = 16
gpt_model_load: n_layer     = 24
gpt_model_load: n_lm_heads  = 7
gpt_model_load: n_wtes      = 8
gpt_model_load: ftype       = 0
gpt_model_load: qntvr       = 0
gpt_model_load: ggml tensor size = 272 bytes
gpt_model_load: ggml ctx size = 1411.25 MB
gpt_model_load: memory size =   192.00 MB, n_mem = 24576
gpt_model_load: model size  =  1218.26 MBbark_load_model_from_file: reading bark codec modelbark_load_model_from_file: total model size  =  4170.64 MBbark_tokenize_input: prompt: 'this is an audio'
bark_tokenize_input: number of tokens in prompt = 513, first 8 tokens: 20579 20172 20199 33733 129595 129595 129595 129595 
encodec_model_load: model size    =   44.32 MB
bark_forward_text_encoder: ...........................................................................................................bark_print_statistics: mem per token =     4.80 MB
bark_print_statistics:   sample time =    59.49 ms / 109 tokens
bark_print_statistics:  predict time = 24761.95 ms / 225.11 ms per token
bark_print_statistics:    total time = 24826.76 msbark_forward_coarse_encoder: ...................................................................................................................................................................................................................................................................................................................................bark_print_statistics: mem per token =     8.51 MB
bark_print_statistics:   sample time =    19.74 ms / 324 tokens
bark_print_statistics:  predict time = 178366.69 ms / 548.82 ms per token
bark_print_statistics:    total time = 178396.22 msbark_forward_fine_encoder: .....bark_print_statistics: mem per token =     0.66 MB
bark_print_statistics:   sample time =   304.20 ms / 6144 tokens
bark_print_statistics:  predict time = 407086.19 ms / 58155.17 ms per token
bark_print_statistics:    total time = 407399.91 msbark_forward_encodec: mem per token = 760209 bytes
bark_forward_encodec:  predict time =  4349.03 ms
bark_forward_encodec:    total time =  4349.07 msNumber of frames written = 51840.main:     load time = 11441.58 ms
main:     eval time = 614987.69 ms
main:    total time = 626429.31 msProcess finished with exit code 0

CG

  • 科大讯飞 语义理解 AIUI封装
  • https://github.com/iboB/pytorch-ggml-plugin

相关文章:

webassembly003 TTS BARK.CPP

TTS task TTS(Text-to-Speech)任务是一种自然语言处理(NLP)任务,其中模型的目标是将输入的文本转换为声音,实现自动语音合成。具体来说,模型需要理解输入的文本并生成对应的语音输出&#xff0…...

HiveSQL题——排序函数(row_number/rank/dense_rank)

一、窗口函数的知识点 1.1 窗户函数的定义 窗口函数可以拆分为【窗口函数】。窗口函数官网指路: LanguageManual WindowingAndAnalytics - Apache Hive - Apache Software Foundationhttps://cwiki.apache.org/confluence/display/Hive/LanguageManual%20Windowin…...

【C语言】(9)分支结构

一.if-else 语句 if-else 适用于简单和复杂的条件判断。 a. 基本 if 语句 用途:基本的条件测试。语法:if (condition) {// 代码块 }示例:if (score > 60) {printf("及格\n"); }b. if-else 语句 用途:二选一的条件…...

Flink 集成 Debezium Confluent Avro ( format=debezium-avro-confluent )

博主历时三年精心创作的《大数据平台架构与原型实现:数据中台建设实战》一书现已由知名IT图书品牌电子工业出版社博文视点出版发行,点击《重磅推荐:建大数据平台太难了!给我发个工程原型吧!》了解图书详情,京东购书链接:https://item.jd.com/12677623.html,扫描左侧二维…...

R语言(数据导入,清洗,可视化,特征工程,建模)

记录一下痛失的超级轻松的数据分析实习(线上),hr问我有没有相关经历,我说我会用jupyter book进行数据导入,清洗,可视化,特征工程,建模,python学和用的比较多,…...

springboot 整合 Activiti6

1.添加maven依赖 <dependency><groupId>org.activiti</groupId><artifactId>activiti-spring-boot-starter-basic</artifactId><version>6.0.0</version> </dependency>2.添加配置 spring:activiti:check-process-definitio…...

微信小程序canvas画布实现直线自由缩放、移动功能

目录 实现效果 一、获取画布信息并绘制背景 二、绘制直线...

Cesium数据加载

文章目录 0.引言1.影像加载1.1Bing地图1.2天地图1.3ArcGIS在线地图1.4高德地图1.5OSM影像1.6MapBox影像 2.OGC地图服务2.1WMS2.2WMTS2.3TMS 3.GeoJSON数据加载4.KML数据加载5.TIFF数据加载6.点云数据加载7.地形数据加载7.1在线地形数据加载7.2本地地形数据加载 8.倾斜摄影模型数…...

【C++历练之路】探秘C++三大利器之一——多态

W...Y的主页 &#x1f60a; 代码仓库分享&#x1f495; 前言&#x1f354;: 在计算机科学的广袤领域中&#xff0c;C多态性是一门令人着迷的技术艺术&#xff0c;它赋予我们的代码更强大的灵活性和可维护性。想象一下&#xff0c;你正在构建一个程序&#xff0c;需要适应不断…...

业务逐字稿

1.WEB端旅游线路发布模块 旅游公司在Web端点击新增旅游线路按钮&#xff0c;浏览器请求发送到Nginx&#xff0c;Nginx反向代理到网关&#xff0c;网关去找微服务&#xff0c;微服务实现具体的旅游线路发布功能 旅游公司工作人员在Web端点击新增旅游线路按钮&#xff0c;浏览器…...

微服务舞台上的“三步曲“:Spring Cloud 服务注册、服务发现与服务调用

在当今软件开发的舞台上&#xff0c;微服务架构已然成为引领潮流的主角。而在这场微服务的大戏中&#xff0c;Spring Cloud 以其强大的工具集成为关键演员&#xff0c;为我们呈现了一个完美的"三步曲"&#xff1a;服务注册、服务发现与服务调用。 第一步&#xff1a…...

中间件

在 Java 开发中&#xff0c;中间件是指位于应用程序和操作系统之间的软件层&#xff0c;它提供了一些通用的功能和服务&#xff0c;帮助简化开发和部署过程&#xff0c;提高系统的可靠性、性能和可扩展性。 常见的 Java 中间件包括&#xff1a; 1.应用服务器&#xff08;Appl…...

4D毫米波雷达——ADCNet 原始雷达数据 目标检测与可行驶区域分割

前言 本文介绍使用4D毫米波雷达&#xff0c;基于原始雷达数据&#xff0c;实现目标检测与可行驶区域分割&#xff0c;它是来自2023-12的论文。 会讲解论文整体思路、输入分析、模型框架、设计理念、损失函数等&#xff0c;还有结合代码进行分析。 论文地址&#xff1a;ADCNe…...

「优选算法刷题」:提莫攻击

一、题目 在《英雄联盟》的世界中&#xff0c;有一个叫 “提莫” 的英雄。他的攻击可以让敌方英雄艾希&#xff08;编者注&#xff1a;寒冰射手&#xff09;进入中毒状态。 当提莫攻击艾希&#xff0c;艾希的中毒状态正好持续 duration 秒。 正式地讲&#xff0c;提莫在 t 发…...

260:vue+openlayers 通过webgl方式加载矢量图层

第260个 点击查看专栏目录 本示例介绍如何在vue+openlayers中通过webgl方式加载矢量图层。在做这个示例的时候,采用vite的方式而非webpack的方式。这里的基础设置需要改变一下。 ol的版本7.5.2或者更高。 直接复制下面的 vue+openlayers源代码,操作2分钟即可运行实现效果 文…...

Android 8.1 相关修改

一些常用修改&#xff0c;做个记录&#xff0c;为了节约时间和防止踩坑。 一、修改默认中文 修改位置&#xff1a; build\make\target\product\full_base.mk 修改内容&#xff1a; # Put en_US first in the list, so make it default. PRODUCT_LOCALES : zh_…...

EG-2121CA (晶体振荡器 低抖动表面声波(SAW)振荡器)

在当今高度数字化的时代&#xff0c;稳定的信号传输显得尤为重要。若要实现信号的稳定传输&#xff0c;晶体振荡器必不可少。EG-2121CA&#xff0c;它是一款低抖动表面声波&#xff08;SAW&#xff09;振荡器设计的产品&#xff0c;凭借其出色的频率范围、稳定的电源电压和可靠…...

Django知识随笔

目录 1.如何再ajax中传输post数据&#xff1f; 2.在form表单中使用jquery序列化&#xff0c;input框过多。 1.如何再ajax中传输post数据&#xff1f; 在ajax传递的那个网址&#xff0c;会调用你路由的视图函数&#xff0c;在视图函数上面加一句 csrf_exempt 。写上之后会有提…...

Facebook 广告帐户:多账号运营如何防止封号?

Facebook目前是全球最受欢迎的社交媒体平台之一&#xff0c;拥有超过27亿活跃用户。因此&#xff0c;它已成为个人和企业向全球受众宣传其产品和服务的重要平台。 然而&#xff0c;Facebook 制定了广告商必须遵守的严格政策和准则&#xff0c;以确保其广告的质量和相关性&…...

酷开会员 | 用酷开系统点亮多彩休闲时刻

现代人的休闲方式多种多样&#xff0c;随着科技的发展和生活水平的提高&#xff0c;人们有了更多的选择。而电视&#xff0c;作为一个休闲娱乐的载体&#xff0c;在生活中扮演着重要的角色。 以前&#xff0c;电视是家家户户休闲娱乐的重要组成部分&#xff0c;现在&#xff0…...

分配土地(100%用例)C卷(JavaPythonC++Node.jsC语言)

从前有个村庄,村民们喜欢在各种田地上插上小旗子,旗子上标识了各种不同的数字。某天集体村民决定将覆盖相同数字的最小矩阵形的土地的分配给为村里做出巨大贡献的村民,请问,此次分配士地,做出贡献的村民中最大会分配多大面积? 输入描述: 第一行输入m和n,m代表村子的土…...

电源的纹波

【电源的“纹波”到底是什么&#xff1f;-哔哩哔哩】 https://b23.tv/28IIbtU 严谨的说&#xff0c;只有中间这种是纹波。 两类电源 线性电源通过自动调节内部电阻&#xff0c;修改输出电压&#xff0c;可以降低输入电压的波动。开关电源的原理&#xff0c;就会产生纹波。纹波…...

85.网游逆向分析与插件开发-物品使用-物品使用的逆向分析与C++代码的封装

内容参考于&#xff1a;易道云信息技术研究院VIP课 上一个内容&#xff1a;项目需求与需求拆解-CSDN博客 码云地址&#xff08;ui显示角色数据 分支&#xff09;&#xff1a;https://gitee.com/dye_your_fingers/sro_-ex.git 码云版本号&#xff1a;453dd83d54140d2e1ee65c9…...

JVM系列——垃圾收集器

对象存活判断 引用计数法 在对象中添加一个引用计数器&#xff0c;每当有一个地方引用它时&#xff0c;计数器值就加一&#xff1b;当引用失效时&#xff0c;计数器值就减一&#xff1b;任何时刻计数器为零的对象就是不可能再被使用的。 可达性分析算法 通过一系列称为“GC …...

那些年与指针的情仇(二)---二级指针指针与数组的那点事函数指针

关注小庄 顿顿解馋(&#xff61;&#xff65;∀&#xff65;)&#xff89;&#xff9e; 欢迎回到我们的大型纪录片《那些年与指针的爱恨情仇》&#xff0c;在本篇博客中我们将继续了解指针的小秘密&#xff1a;二级指针&#xff0c;指针与数组的关系以及函数指针。请放心食用&a…...

APPCRASH 文件管理器不停重启问题记录 (最后reinstall解决)以及重装后到底会怎样

问题诱因&#xff1a; 时间 2024年1月 &#xff08;严重怀疑&#xff0c;但无法实锤&#xff09; 是我不知道什么时候&#xff08;应该是近期&#xff09;安装了powertoy的预览版&#xff0c;系统不知道什么时候&#xff08;也应该是这两天&#xff09;安装了微软出品的PC man…...

导出excel功能,前端的解决方案

import { utils, writeFileXLSX } from xlsx // 导出excel async exportToExcel() {// 获取要导出的业务数据&#xff08;这里的接口自己改成实际使用的接口&#xff09;const res await getRuleListAPI(this.params)// 表头英文字段key&#xff08;这里的数据改成接口返回的实…...

【lesson24】MySQL索引的理解

文章目录 建立测试表插入多条记录查看插入结果中断一下---为何IO交互要是 Page重谈page理解单个page理解多个page 页目录单页情况多页情况复盘一下InnoDB 在建立索引结构来管理数据的时候&#xff0c;其他数据结构为何不行&#xff1f;B vs B聚簇索引 VS 非聚簇索引 建立测试表…...

Oracle篇—分区索引的重建和管理(第三篇,总共五篇)

☘️博主介绍☘️&#xff1a; ✨又是一天没白过&#xff0c;我是奈斯&#xff0c;DBA一名✨ ✌✌️擅长Oracle、MySQL、SQLserver、Linux&#xff0c;也在积极的扩展IT方向的其他知识面✌✌️ ❣️❣️❣️大佬们都喜欢静静的看文章&#xff0c;并且也会默默的点赞收藏加关注❣…...

前端大厂面试题探索编辑部——第一期

目录 简介 题目 单选题 题解 A选项的Content-Security-Policy http-equiv属性 content属性 B选项的CSRF 使用CSRF Token 验证Referer和Origin头 C选项的HTTP Only D选项的防止SQL注入 输入验证和转义 简介 这个是一个长系列&#xff0c;我会以题目为导向&#xff…...