当前位置: 首页 > news >正文

课程培训网站建设/全网seo是什么意思

课程培训网站建设,全网seo是什么意思,毕业设计代做网站都有哪些,wordpress英文版改中文0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 基于深度学习的植物识别算法研究与实现 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:4分工作量:4分创新点:4分 🧿 更多…

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于深度学习的植物识别算法研究与实现

在这里插入图片描述

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


2 相关技术

2.1 VGG-Net模型

Google DeepMind公司研究员与牛津大学计算机视觉组在2014年共同研发出了一种全新的卷积神经网络–VGG-
Net。在同年举办的ILSVRC比赛中,该网络结构模型在分类项目中取得了十分出色的成绩,由于其简洁性和实用性,使得其在当时迅速,飞快地成为了最受欢迎的卷积神经网络模型。VGG-
Net卷积神经网络在近年来衍生出了A-
E七种不同的层次结构,本次研究使用其中的D结构,也就是VGG-16Net结构,该结构中包含了13个卷积层,5个池化层和3个全连接层。针对所有的卷积层,使用相同的5x5大小的卷积核,针对所有的池化层,使用相同的3x3大小的池化核。VGG-
Net结构如图所示。

在这里插入图片描述

2.2 VGG-Net在植物识别的优势

在针对植物识别问题上,VGG-Net有着一些相较于其他神经网络的优势,主要包括以下几点:

(1) 卷积核,池化核大小固定

网络中所有的卷积核大小固定为3x3,所有的池化核大小固定为5x5。这样在进行卷积和池化操作的时候,从数据中提取到的特征更加明显,同时在层与层的连接时,信息的丢失会更少,更加方便后续对于重要特征的提取和处理。

(2) 特征提取更全面

VGG-
Net网络模型中包含了13个卷积层。卷积层数目越多,对于特征的提取更加的全面。由于需要对于植物的姿态、颜色等进行判定,植物的特征较多,需要在提取时更加的全面,细致,才有可能得到一个更加准确的判定。VGG-
Net符合条件。

在这里插入图片描述

(3) 网络训练误差收敛速度较快

VGG-
Net网络在训练时收敛速度相对较快,能够较快地得到预期的结果。具有这一特点的原因有两个,一个是网络中每一个卷积层和池化层中的卷积核大小与池化核大小固定,另一个就是对于各个隐藏层的参数初始化方法使用专门针对ReLU激活函数的Kaiming正态初始化方法。

3 VGG-Net的搭建

本次研究基于Pytorch深度学习框架进行网络的搭建,利用模块化的设计思想,构建一个类,来对于整个的网络进行结构上的封装。这样搭建的好处是可以隐藏实现的内部细节,提高代码的安全性,增强代码的复用效率,并且对于一些方法,通过在内部集成,可以方便之后对于其中方法的调用,提升代码的简洁性。
在网络搭建完成后,将数据集传入网络中进行训练,经过一段时间后即可得到植物识别的分类识别结果。

3.1 Tornado简介

Tornado全称Tornado Web
Server,是一个用Python语言写成的Web服务器兼Web应用框架,由FriendFeed公司在自己的网站FriendFeed中使用,被Facebook收购以后框架在2009年9月以开源软件形式开放给大众。

(1) 优势

  • 轻量级web框架
  • 异步非阻塞IO处理方式
  • 出色的抗负载能力
  • 优异的处理性能,不依赖多进程/多线程,一定程度上解决C10K问题
  • WSGI全栈替代产品,推荐同时使用其web框架和HTTP服务器

(2) 关键代码

class MainHandler(tornado.web.RequestHandler):def get(self):
​            self.render("index.html")def post(self):keras.backend.clear_session()img = Image.open(BytesIO(self.request.files['image'][0]['body']))img = imgb_img = Image.new('RGB', (224, 224), (255, 255, 255))size = img.sizeif size[0] >= size[1]:rate = 224 / size[0]new_size = (224, int(size[1] * rate))img = img.resize(new_size, Image.ANTIALIAS).convert("RGB")b_img.paste(img, (0, random.randint(0, 224 - new_size[1])))else:rate = 224 / size[1]new_size = (int(size[0] * rate), 224)img = img.resize(new_size, Image.ANTIALIAS).convert("RGB")b_img.paste(img, (random.randint(0, 224 - new_size[0]), 0))if self.get_argument("method", "mymodel") == "VGG16":Model = load_model("VGG16.h5")else:Model = load_model("InceptionV3.h5")data = orc_img(Model,b_img)self.write(json.dumps({"code": 200, "data": data}))def make_app():template_path = "templates/"static_path = "./static/"return tornado.web.Application([(r"/", MainHandler),], template_path=template_path, static_path=static_path, debug=True)​    
​    def run_server(port=8000):
​        tornado.options.parse_command_line()
​        app = make_app()
​        app.listen(port)print("\n服务已启动 请打开 http://127.0.0.1:8000 ")
​        tornado.ioloop.IOLoop.current().start()

4 Inception V3 神经网络

GoogLeNet对网络中的传统卷积层进行了修改,提出了被称为 Inception
的结构,用于增加网络深度和宽度,提高深度神经网络性能。从Inception V1到Inception
V4有4个更新版本,每一版的网络在原来的基础上进行改进,提高网络性能。

4.1 网络结构

在这里插入图片描述

inception结构的作用(inception的结构和作用)

作用:代替人工确定卷积层中过滤器的类型或者确定是否需要创建卷积层或者池化层。即:不需要人为决定使用什么过滤器,是否需要创建池化层,由网络自己学习决定这些参数,可以给网络添加所有可能值,将输入连接起来,网络自己学习需要它需要什么样的参数。

inception主要思想

用密集成分来近似最优的局部稀疏解(如上图)

  • 采用不同大小的卷积核意味着有不同大小的感受野,最后的拼接意味着不同尺度特征的融合。
  • 之所以卷积核大小采用1x1、3x3和5x5,主要是为了方便对齐。设定卷积步长stride=1之后,只要分别设定padding = 0、1、2,采用same卷积可以得到相同维度的特征,然后这些特征直接拼接在一起。
  • 很多地方都表明pooling挺有效,所以Inception里面也嵌入了pooling。
  • 网络越到后面特征越抽象,且每个特征涉及的感受野也更大,随着层数的增加,3x3和5x5卷积的比例也要增加。
  • 最终版inception,加入了1x1 conv来降低feature map厚度。

5 开始训练

5.1 数据集

训练图像按照如下方式进行分类,共分为9文件夹。

在这里插入图片描述

5.2 关键代码

   from keras.utils import Sequenceimport math​    class SequenceData(Sequence):def __init__(self, batch_size, target_size, data):# 初始化所需的参数self.batch_size = batch_sizeself.target_size = target_sizeself.x_filenames = datadef __len__(self):# 让代码知道这个序列的长度num_imgs = len(self.x_filenames)return math.ceil(num_imgs / self.batch_size)def __getitem__(self, idx):# 迭代器部分batch_x = self.x_filenames[idx * self.batch_size: (idx + 1) * self.batch_size]imgs = []y = []for x in batch_x:img = Image.open(x)b_img = Image.new('RGB', self.target_size, (255, 255, 255))size = img.sizeif size[0] >= size[1]:rate = self.target_size[0] / size[0]new_size = (self.target_size[0], int(size[1] * rate))img = img.resize(new_size, Image.ANTIALIAS).convert("RGB")b_img.paste(img, (0, random.randint(0, self.target_size[0] - new_size[1])))else:rate = self.target_size[0] / size[1]new_size = (int(size[0] * rate), self.target_size[0])img = img.resize(new_size, Image.ANTIALIAS).convert("RGB")b_img.paste(img, (random.randint(0, self.target_size[0] - new_size[0]), 0))img = b_imgif random.random() < 0.1:img = img.convert("L").convert("RGB")if random.random() < 0.2:img = img.rotate(random.randint(0, 20))  # 随机旋转一定角度if random.random() < 0.2:img = img.rotate(random.randint(340, 360))  # 随 旋转一定角度imgs.append(img.convert("RGB"))x_arrays = 1 - np.array([np.array(i)  for i in imgs]).astype(float) / 255  # 读取一批图片batch_y = to_categorical(np.array([labels.index(x.split("/")[-2]) for x in batch_x]), len(labels))return x_arrays, batch_y​    

5.3 模型预测

利用我们训练好的 vgg16.h5 模型进行预测,相关代码如下:

    def orc_img(model,image):
​        img =np.array(image)
​        img = np.array([1 - img.astype(float) / 255])
​        predict = model.predict(img)
​        index = predict.argmax()print("CNN预测", index)
​    target = target_name[index]index2 = np.argsort(predict)[0][-2]target2 = target_name[index2]index3 = np.argsort(predict)[0][-3]target3 = target_name[index3]return {"target": target,"predict": "%.2f" % (float(list(predict)[0][index]) * 64),"target2": target2,"predict2": "%.2f" % (float(list(predict)[0][index2]) * 64),}

6 效果展示

6.1 主页面展示

在这里插入图片描述

6.2 图片预测

在这里插入图片描述

6.3 三维模型可视化

学长在web页面上做了一个三维网络结构可视化功能,可以直观的看到网络模型结构

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

相关文章:

挑战杯 python+深度学习+opencv实现植物识别算法系统

0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 基于深度学习的植物识别算法研究与实现 &#x1f947;学长这里给一个题目综合评分(每项满分5分) 难度系数&#xff1a;4分工作量&#xff1a;4分创新点&#xff1a;4分 &#x1f9ff; 更多…...

pytest的常用插件和Allure测试报告

pytest常用插件 pytest-html插件 安装&#xff1a; pip install pytest-html -U 用途&#xff1a; 生成html的测试报告 用法&#xff1a; ​在.ini配置文件里面添加 addopts --htmlreport.html --self-contained-html 效果&#xff1a; 执行结果中存在html测试报告路…...

神经网络的权重是什么?

请参考这个视频https://www.bilibili.com/video/BV18P4y1j7uH/?spm_id_from333.788&vd_source1a3cc412e515de9bdf104d2101ecc26a左边是拟合的函数&#xff0c;右边是均方和误差&#xff0c;也就是把左边的拟合函数隐射到了右边&#xff0c;右边是真实值与预测值之间的均方…...

C语言代码 在屏幕上输出9*9乘法口诀表

在屏幕上输出9*9乘法口诀表。 代码示例&#xff1a; #include <stdio.h>int main() {int i 0;for (i 1; i < 9; i)//打印所有行的循环{int j 0;for (j 1; j < i; j)//打印每一行中所有列的循环{printf("%d*%d%-2d ", i, j, i * j);//%-2d的意思是两…...

11.0 Zookeeper watcher 事件机制原理剖析

zookeeper 的 watcher 机制&#xff0c;可以分为四个过程&#xff1a; 客户端注册 watcher。服务端处理 watcher。服务端触发 watcher 事件。客户端回调 watcher。 其中客户端注册 watcher 有三种方式&#xff0c;调用客户端 API 可以分别通过 getData、exists、getChildren …...

HGAME 2024 WEEK 1 :web ezHTTP

题目&#xff1a; 看到这个就知道是文件头伪造 第一想法就是Referer伪造 所以伪造 Referer: vidar.club 然后构造伪造的Referer 然后提示通过那些东西访问页面&#xff0c;User-Agent: 是构造你浏览器访问信息的&#xff0c;所以复制右边那一串替代就好了 然后要求我们从本地…...

Linux【docker 设置阿里源】

文章目录 一、查看本地docker的镜像配置二、配置阿里镜像三、检查配置 一、查看本地docker的镜像配置 docker info一般没有配置过是不会出现Registry字段的 二、配置阿里镜像 直接执行下面代码即可&#xff0c;安装1.10.0以上版本的Docker客户端都会有/etc/docker 1.建立配置…...

app逆向-frida-rpc详解

Frida-RPC是Frida工具的一个组件&#xff0c;用于在应用程序和Frida脚本之间进行远程过程调用&#xff08;RPC&#xff09;。远程过程调用是一种允许应用程序的不同部分或不同的应用程序之间进行通信的方法。在Frida中&#xff0c;RPC通过JavaScript脚本和应用程序之间建立通信…...

计算机网络(第六版)复习提纲27

7 TCP流量控制 A 利用滑动窗口实现流量控制 所谓流量控制&#xff0c;就是让发送方发送速率不要太快&#xff0c;让接收方来得及接收 1 利用窗口进行流量控制 2 持续计时器和零窗口探测报文&#xff08;仅携带一字节的数据&#xff09; B TCP的传输效率&#xff08;TCP报文段的…...

解析与模拟常用字符串函数strcpy,strcat,strcmp,strstr(一)

今天也是去学习了一波字符串函数&#xff0c;想着也为了加深记忆&#xff0c;所以写一下这篇博客。既帮助了我也帮助了想学习字符串函数的各位。下面就开始今天的字符串函数的学习吧。 目录 strcpy与strncpy strcat与strncat strcmpy strstr strcpy与strncpy 在 C 语言中&…...

node.js后端+小程序前端+mongoDB(增删改查)

前言 今天我对比了以下node.js的express与python的fastAPI&#xff0c;我决定我还是出一期关于node.jsmangoDB小程序的小案例吧。 不是python的fastAPI不好用&#xff0c;因为fastAPI是python较新的技术&#xff0c;我不敢果断发出教学文章&#xff08;这件事情还是留着给pyt…...

thinkphp数据批量提交(群发消息)

<form id="edit-form" class="form-horizontal" role="form" data-toggle<...

大华 DSS 数字监控系统 attachment_getAttList.action SQL 注入漏洞复现

0x01 产品简介 大华 DSS 数字监控系统是大华开发的一款安防视频监控系统,拥有实时监视、云台操作、录像回放、报警处理、设备管理等功能。 0x02 漏洞概述 大华 DSS存在SQL注入漏洞,攻击者 /portal/attachment_getAttList.action 路由发送特殊构造的数据包,利用报错注入获…...

vue2学习笔记(2/2)

vue2学习笔记&#xff08;1/2&#xff09; vue2学习笔记&#xff08;2/2&#xff09; 文章目录 1. 初始化脚手架2. 分析脚手架&render函数文件结构图示及说明main.jsindex.htmlApp.vueSchool.vueStudent.vue 关于不同版本的Vue修改默认配置vue.config.js配置文件 3. ref属…...

uniapp 之 base64转临时地址播放mp3

需求是&#xff1a;进入页面的时候是先有背景音乐&#xff0c;发送问题请求回答的时候会返回文字和音频&#xff0c;前端要把音频读出来&#xff0c;并且把背景音乐停止&#xff0c;读完音频后再打开背景音乐 一开始用的直接base64直接拼接在地址后 真机放不了 const innerAu…...

【网站项目】038汽车养护管理系统

&#x1f64a;作者简介&#xff1a;拥有多年开发工作经验&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。&#x1f339;赠送计算机毕业设计600个选题excel文件&#xff0c;帮助大学选题。赠送开题报告模板&#xff…...

倒计时64天

B-小红的因子数_牛客周赛 Round 31 (nowcoder.com) 超时了&#xff08;108.33/125&#xff09; #include <bits/stdc.h> using namespace std; const int N 1e5 5; const int inf 0x3f3f3f3f; #define int long long void solve() {int x;cin>>x;if(x1){cout&…...

003集—三调数据库添加三大类字段——arcgis

在国土管理日常统计工作中经常需要用到三大类数据&#xff08;农用地、建设用地、未利用地&#xff09;&#xff0c;而三调数据库中无三大类字段&#xff0c;因此需要手工录入三大类字段&#xff0c;并根据二级地类代码录入相关三大类名称。本代码可一键录入海量三大类名称统计…...

python基础使用之excel数据处理

当我们需要用python处理 Excel 表格数据时&#xff0c;Python 提供了一个强大的库pandas。pandas 是一个用于数据分析的开源 Python 库&#xff0c;它可以帮助我们轻松地读取、操作和分析 Excel 表格数据。下面通过一个实例&#xff0c;展示 pandas如何 来处理 Excel 表格数据的…...

【算法】【数据结构】算法与数据结构的关系

程序算法数据结构语言工具和环境 但在算法学习过程中&#xff0c;我认识到算法和数据结构是密不可分的&#xff0c;脱离数据结构谈论算法是空架子。 算法&#xff1a;解决问题的步骤和方法。对数据进行操作和处理的方法。 数据结构&#xff1a;用来存储数据的方式。 数据结构和…...

Libvirt 迁移标志详解

可参考&#xff1a;https://libvirt.org/html/libvirt-libvirt-domain.html#virDomainMigrateFlags 在虚拟化环境中&#xff0c;迁移是一项重要的功能&#xff0c;Libvirt 提供了一系列标志&#xff0c;用于控制迁移过程中的不同行为。以下是 virDomainMigrateFlags 枚举的详细…...

【数据分享】1929-2023年全球站点的逐月平均能见度(Shp\Excel\免费获取)

气象数据是在各项研究中都经常使用的数据&#xff0c;气象指标包括气温、风速、降水、能见度等指标&#xff0c;说到气象数据&#xff0c;最详细的气象数据是具体到气象监测站点的数据&#xff01; 之前我们分享过1929-2023年全球气象站点的逐月平均气温数据、逐月最高气温数据…...

NLP中的嵌入和距离度量

本文将深入研究嵌入、矢量数据库和各种距离度量的概念&#xff0c;并提供示例和演示代码。 NLP中的嵌入 嵌入是连续向量空间中对象、单词或实体的数值表示。在NLP中&#xff0c;词嵌入捕获词之间的语义关系&#xff0c;使算法能够更好地理解文本的上下文和含义。 让我们试着用…...

jsp教务管理系统Myeclipse开发mysql数据库web结构java编程计算机网页项目

一、源码特点 JSP 教务管理系统是一套完善的java web信息管理系统&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为 TOMCAT7.0,Myeclipse8.5开发&#xff0c;数据库为Mysql5.0&…...

基恩士 KV-8000 PLC通讯简单测试

1、KV-8000通讯协议 基恩士 KV-8000 PLC支持多种通讯方式&#xff0c;包括&#xff1a;OPC UA、Modbus、上位链路命令等。其中OPC UA需要对服务器和全局变量进行设置&#xff0c;Modbus需要调用功能块。默认支持的是上位链路命令&#xff0c;实际是一条条以回车换行结束的ASCII…...

【高质量精品】2024美赛B题22页word版高质量半成品论文+多版保奖思路+数据+前四问思路代码等(后续会更新)

一定要点击文末的卡片&#xff0c;进入后&#xff0c;获取完整论文&#xff01;&#xff01; B 题整体模型构建 1. 潜水器动力系统失效&#xff1a;模型需要考虑潜水器在无推进力情况下的行为。 2. 失去与主船通信&#xff1a;考虑无法从主船接收指令或发送位置信息的情况。…...

apache_exporter安装说明

Apache Exporter 问题描述 需要监控apache服务&#xff0c;部署了apache_exporter&#xff0c;对过程进行一下记录。 源码参见apache_exporter ①下载 https://github.com/Lusitaniae/apache_exporter/releases②解压缩 tar -xzvf apache_exporter-0.7.0.linux-amd64.tar…...

代码随想录算法训练营29期Day42|卡码网46,LeetCode 416

文档讲解&#xff1a;背包问题二维 背包问题一维 分割等和子集 46.整数拆分 题目链接&#xff1a;https://kamacoder.com/problempage.php?pid1046 思路&#xff1a; 在一维dp数组中&#xff0c;dp[j]表示&#xff1a;容量为j的背包&#xff0c;所背的物品价值可以最大为d…...

java的excel列行合并模版

1.效果 2.模版 <tableborder"1"cellpadding"0"cellspacing"0"class"tablebor"id"TABLE"><tr align"center" class"bg217"><td style"background-color: #008000; color: #ffffff;p…...

【ES数据可视化】kibana实现数据大屏

目录 1.概述 2.绘制数据大屏 2.1.准备数据 2.2.绘制大屏 3.嵌入项目中 1.概述 再来重新认识一下kibana&#xff1a; Kibana 是一个用于数据可视化和分析的开源工具&#xff0c;是 Elastic Stack&#xff08;以前称为 ELK Stack&#xff09;中的一部分&#xff0c;由 Ela…...