当前位置: 首页 > news >正文

【人工智能】Fine-tuning 微调:解析深度学习中的利器(7)

在深度学习领域,Fine-tuning 微调是一项重要而强大的技术,它为我们提供了在特定任务上充分利用预训练模型的途径。本文将深入讨论 Fine-tuning 的定义、原理、实际操作以及其在不同场景中的应用,最后简要探讨Fine-tuning 的整体架构。

1. Fine-tuning的定义

Fine-tuning(微调)指的是在一个已经在大规模数据上预训练好的模型的基础上,进一步在特定任务上进行训练,以使模型适应该任务的特定数据和要求。这种方法允许我们充分利用预训练模型在大数据上学到的通用特征,从而在相对较小的新任务数据集上取得更好的性能。

通俗的讲,Fine-tuning是指在一个已经训练好的模型基础上,进一步在特定任务上进行训练,从而使模型适应该任务的特定数据和要求。通常情况下,我们会使用一个在大规模数据上预训练的模型作为基础模型,然后在特定的任务上进行fine-tuning,以获得更好的性能。 以图像分类为例,假设我们有一个在大规模图像数据上预训练的卷积神经网络(CNN)模型,这个模型已经学到了从图像中提取特征的能力。现在,我们需要将这个模型用于一个特定的图像分类任务,比如猫狗分类。我们可以将这个预训练的模型作为基础模型,然后在猫狗分类任务上进行fine-tuning。在训练过程中,模型会根据任务的数据和要求进行权重的调整,从而使模型适应该任务的特定特征和模式。通过这种方式,我们可以在相对较小的猫狗分类数据集上训练一个性能较好的图像分类模型。 Fine-tuning的优点在于,它可以充分利用预训练模型在大规模数据上学到的特征和知识,从而在小数据集上也能获得较好的性能。此外,Fine-tuning还可以节省大量的训练时间和计算资源,因为我们可以直接在预训练模型的基础上进行训练,而不需要从头开始训练一个新的模型。

2. Fine-tuning的原理

Fine-tuning的原理基于迁移学习的思想。在预训练阶段,模型学到了在大规模数据上通用的特征和模式。在Fine-tuning阶段,我们冻结预训练模型的一部分层,以保留通用特征,并调整模型的输出层以适应新任务。通过在新任务数据上进行训练,模型会根据任务的要求对权重进行微调,从而适应新任务的特定特征。

3. 如何进行Fine-tuning微调

Fine-tuning微调的步骤主要包括:

  • 选择预训练模型: 选择一个在大规模数据上表现优秀的预训练模型。
  • 冻结部分网络层: 冻结预训练模型的一部分层,通常是底层或中间层,以保留通用特征。
  • 调整网络结构: 根据新任务的需求,调整预训练模型的结构,如修改输出层、添加新层等。
  • 在目标任务上进行训练: 使用新任务的数据集对整个模型进行训练,包括解冻的层。模型根据新任务数据和标签进行权重的调整。
  • 评估性能: 在Fine-tuning完成后,评估模型在新任务上的性能,通常使用验证集或测试集上的性能指标。

4. Fine-tuning的使用场景

Fine-tuning适用于多种场景,包括但不限于:

  • 小样本学习: 当任务数据有限时,通过Fine-tuning可以充分利用已有模型在大数据上学到的特征。
  • 领域自适应: 将在一个领域上训练好的模型迁移到另一个领域,适应新领域的特点。
  • 多任务学习: 在一个模型上同时解决多个相关的问题,提高模型的泛化能力。
  • 迁移学习到不同模态: 将一个模型从一个感知模态迁移到另一个感知模态,如从图像到文本。
  • 增量学习: 在已有模型的基础上不断添加新的任务,保留先前学到的知识。
  • 对抗性学习: 提高模型对抗恶意攻击的能力,增强模型的鲁棒性。

5. Fine-tuning的整体架构

Fine-tuning的整体架构包括:

  • 预训练模型: 在大规模数据上训练好的模型,包含通用特征。
  • 新任务层: 根据新任务需求调整或添加的网络层。
  • 解冻层: 允许在Fine-tuning过程中更新权重的部分,通常是预训练模型中的高层。
  • Fine-tuning策略: 包括学习率的设置、正则化等策略,以保持模型的泛化能力。
  • 数据管道: 提供新任务所需的训练和验证数据,包括数据预处理和增强。

Fine-tuning的整体架构在以上组件的合理搭配下,能够使模型在新任务上取得更好的性能,同时充分利用预训练模型的知识。

6. 结语

Fine-tuning 微调作为一种灵活且强大的迁移学习方法,在深度学习应用中发挥着重要作用。通过理解其定义、原理、操作步骤以及应用场景,我们可以更好地利用 Fine-tuning 来提高模型的性能,使其适应各种实际应用需求。

相关文章:

【人工智能】Fine-tuning 微调:解析深度学习中的利器(7)

在深度学习领域,Fine-tuning 微调是一项重要而强大的技术,它为我们提供了在特定任务上充分利用预训练模型的途径。本文将深入讨论 Fine-tuning 的定义、原理、实际操作以及其在不同场景中的应用,最后简要探讨Fine-tuning 的整体架构。 1. Fi…...

黄金交易策略(Nerve Nnife):大K线对技术指标的影响

我们使用heiken ashi smoothed来做敏感指标(大趋势借助其转向趋势预判,但不是马上转变),has默认使用6根k线的移动平均值来做计算的。若在6根k线规范内有一个突变的行情(k线很长),那么整个行情的…...

django中实现数据迁移

在Django中,数据迁移(data migrations)通常指的是将模型(models)中的数据从一个状态迁移到另一个状态。这可以涉及很多操作,比如添加新字段、删除字段、更新字段的数据类型,或者更改表之间的关系…...

全新抖音快手小红书去水印系统网站源码 | 支持几十种平台

全新抖音快手小红书去水印系统网站源码 | 支持几十种平台...

ChatGPT炸裂了

优质内容:ChatGPT太炸裂了 hello,我是小索奇 很多人在使用ChatGPT时遇到了两个主要问题,导致他们觉得这个工具并没有带来太多实际价值。首先,许多人发现ChatGPT的回答缺乏深度,缺乏实用性。其次,一些人在使…...

小白代码审计入门

最近小白一直在学习代码审计,对于我这个没有代码审计的菜鸟来说确实是一件无比艰难的事情。但是着恰恰应了一句老话:万事开头难。但是小白我会坚持下去。何况现在已经喜欢上了代码审计,下面呢小白就说一下appcms后台模板Getshell以及读取任意文件,影响的版本是2.0.101版本。…...

[开源]GPT Boss – 用图形化的方式部署您的私人GPT镜像网站

在这个以数据和智能为核心的时代,掌握最新的技术趋势是每个企业和个人都需要做到的。这就是GPT Boss存在的意义:一个基于OpenAI技术的一站式GPT应用解决方案。 自2022年起,GPT Boss团队便投身于人工智能领域,将OpenAI的GPT模型带给…...

FastAPI使用ORJSONResponse作为默认的响应类型

FastAPI默认使用Python的标准库来做json解析,如果换成rust编写的orjson,速度上会快一些 1. 安装依赖 pip install orjson 2. 设置为默认响应类型 from fastapi.responses import ORJSONResponseapp FastAPI(titlexxx, default_response_classORJSON…...

C++初阶:适合新手的手撕string类(模拟实现string类)

上次讲了常用的接口:C初阶:初识STL、String类接口详细讲解(万字解析) 今天就来进行模拟实现啦 文章目录 1.基本结构与文件规划2.构造函数(constructor)2.1构造函数2.1.1无参有参分开2.1.2利用缺省参数合起来 2.2拷贝构…...

uniapp canvas游标卡尺效果

效果 根据公司业务仿照写的效果。原项目从微信小程序转uniapp,未测试该效果在android端效果。 uniapp直接使用canvas不可做子组件,否则无效果显示,其次显示时要考虑页面渲染超时的问题。 如效果所见,可以设置取值精度。 gitee地址:project_practice: 项目练习 - Gitee.…...

【django】建立python虚拟环境-20240205

1.确保已经安装pip3 install venv 2.新建虚拟环境 python -m venv myenv 3.安装虚拟环境的依赖包 pip install … 4.激活虚拟环境 cd myenv cd Scripts activate 激活activate.bat并进入虚拟环境 进入虚拟环境后,命令行前面显示(myenv&#xff0…...

070:vue+cesium: 利用canvas设置线性渐变色材质

第070个 点击查看专栏目录 本示例的目的是介绍如何在vue+cesium中设置线性渐变色的材质,这里使用canvas的辅助方法。 直接复制下面的 vue+cesium源代码,操作2分钟即可运行实现效果. 文章目录 示例效果配置方式示例源代码(共104行)专栏目标示例效果 配置方式 1)查看基础…...

Electron+Vue实现仿网易云音乐实战

前言 这个项目是我跟着官方文档的那个Electron入门教程大致跑了一遍,了解了下Electron开发流程之后的实战项目,所以中间应该是会有很多写法不是很规范,安全性有可能也没考虑到,可实现的各种api也不是很了解,适合初学者。 必须感谢 https://github.com/Binaryify/NeteaseC…...

【玩转408数据结构】线性表——定义和基本操作

考点剖析 线性表是算法题命题的重点,该类题目实现相对容易且代码量不高,但需要最优的性能(也就是其时间复杂度以及空间复杂度最优),这样才可以获得满分。所以在考研复习中,我们需要掌握线性表的基本操作&am…...

回归预测 | Matlab实现ABC-BP人工蜂群算法优化BP神经网络多变量回归预测

回归预测 | Matlab实现ABC-BP人工蜂群算法优化BP神经网络多变量回归预测 目录 回归预测 | Matlab实现ABC-BP人工蜂群算法优化BP神经网络多变量回归预测预测效果基本描述程序设计参考资料 预测效果 基本描述 1.Matlab实现ABC-BP人工蜂群算法优化BP神经网络多变量回归预测&#x…...

SQL笔记-2024/01/31

cross join 两个表的笛卡尔积 例如: select s.name student_name,s.age student_age,s.class_id class_id,c.name class_name from student s cross join class c; 子查询 select s.name name,s.score score,s.class_id class_id from student s where s.class_id …...

C#系列-简介(1)

一,C#简介 C#(读作“C Sharp”)是一种由微软公司开发的、运行于.NET Framework和.NET Core(现在统称为.NET)之上的高级编程语言。C#结合了C的强大功能和Java的易用性,旨在成为一种“优雅且安全”的语言&am…...

LoRA:语言模型微调的计算资源优化策略

编者按:随着数据量和计算能力的增加,大模型的参数量也在不断增加,同时进行大模型微调的成本也变得越来越高。全参数微调需要大量的计算资源和时间,且在进行切换下游任务时代价高昂。 本文作者介绍了一种新方法 LoRA,可…...

pycharm deployment 灰色 一直无法点击

我的development的配置如下,我看了很多教程一直不知道为什么一直是灰色的, 文件夹配置: 如果你这里 Autodect,那么你Mapping 的文件夹应该是应该省略这个前缀的,例如我下面,我应该将本地文件夹映射到/home…...

解决“使用Edge浏览器每次鼠标点击会出现一个黑色边框”的问题

目录 一 问题描述 二 解决方案 三 方案来源 四 参考资料 & AI工具 一 问题描述 为了方便进行收藏夹同步,开始从Chrome浏览器切换到Edge浏览器。在使用Edge浏览器过程中发现“每次鼠标点击会出现一个黑色边框”(效果如下图所示)&#…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

【Oracle APEX开发小技巧12】

有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...

UDP(Echoserver)

网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版

7种色调职场工作汇报PPT,橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版:职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...