【大数据】Flink on YARN,如何确定 TaskManager 数
Flink on YARN,如何确定 TaskManager 数
- 1.问题
- 2.并行度(Parallelism)
- 3.任务槽(Task Slot)
- 4.确定 TaskManager 数
1.问题
在 Flink 1.5 Release Notes 中,有这样一段话,直接上截图。
这说明从 1.5
版本开始,Flink on YARN 时的容器数量,即 TaskManager 数量,将由程序的并行度自动推算,也就是说 flink run
脚本的 -yn
/ --yarncontainer
参数不起作用了(该参数用于设置 TaskManager 的个数)。那么自动推算的规则是什么呢?要弄清楚它,先来复习 Flink 的 并行度(Parallelism
)和 任务槽(Task Slot
)。
2.并行度(Parallelism)
与 Spark 类似地,一个 Flink Job 在生成执行计划时也划分成多个 Task。Task 可以是 Source、Sink、算子或算子链。Task 可以由多线程并发执行,每个线程处理 Task 输入数据的一个子集,而并发的数量就称为 Parallelism
,即 并行度。
Flink 程序中设定并行度有 4 种级别,从低到高分别为:算子级别、执行环境级别(ExecutionEnvironment
)、客户端(命令行)级别、配置文件级别(flink-conf.yaml
)。实际执行时,优先级则是反过来的,算子级别最高。简单示例如下:
- 1️⃣ 算子级别
dataStream.flatMap(new SomeFlatMapFunction()).setParallelism(4);
- 2️⃣ 执行环境级别
streamExecutionEnvironment.setParallelism(4);
- 3️⃣ 命令行级别
bin/flink -run --parallelism 4 example-0.1.jar
- 4️⃣
flink-conf.yaml
级别
parallelism.default: 4
3.任务槽(Task Slot)
Flink 运行时由两个组件组成:JobManager 与 TaskManager,与 Spark Standalone 模式下的 Master 与 Worker 是同等概念。
JobManager 和 TaskManager 本质上都是 JVM 进程。为了提高 Flink 程序的运行效率和资源利用率,Flink 在 TaskManager 中实现了 任务槽(Task Slot
)。任务槽是 Flink 计算资源的基本单位,每个任务槽可以在同一时间执行一个 Task,而 TaskManager 可以拥有一个或者多个任务槽。
任务槽可以实现 TaskManager 中不同 Task 的资源隔离,不过是逻辑隔离,并且只隔离内存,亦即在调度层面认为每个任务槽 “应该” 得到 taskmanager.heap.size
的 1 / N 1/N 1/N 大小的内存,CPU 资源不算在内。
TaskManager 的任务槽个数在使用 flink run
脚本提交 on YARN 作业时用 -ys
/ --yarnslots
参数来指定,另外在 flink-conf.yaml
文件中也有默认值 taskManager.numberOfTaskSlots
。一般来讲,我们设定该参数时可以将它理解成一个 TaskManager 可以利用的 CPU 核心数,因此也要根据实际情况(集群的 CPU 资源和作业的计算量)来确定。
4.确定 TaskManager 数
以 Flink 自带示例中简化的 WordCount 程序为例:
// 执行环境并行度设为6
env.setParallelism(6);
// Source并行度为1
DataStream<String> text = env.readTextFile(params.get("input")).setParallelism(1);
DataStream<Tuple2<String, Integer>> counts = text.flatMap(new Tokenizer()).keyBy(0).sum(1);
counts.print();
用 --yarnslots 3
参数来执行,即每个 TaskManager 分配 3 个任务槽。TaskManager、任务槽和任务的分布将如下图所示,方括号内的数字为并行线程的编号。
由图中可以看出,由于算子链机制的存在,KeyAgg
与 Sink
操作链接在了一起,作为一个 Task 来执行。
Flink 允许任务槽共享,即来自同一个 Job 的不同 SubTask(即 算子的并发实例)进入同一个槽位,因此在图中也可以见到任务槽 X 中同时存在 FlatMap[X]
与 KeyAgg[X]
+ Sink[X]
。任务槽共享有两点好处:
- 能够让每个 SubTask 都均摊到不同的 TaskManager,避免负载倾斜。
- 不需要再计算 App 一共需要起多少个 Task,因为作业需要的任务槽数量肯定等于 Job 中最大的并行度。
所以,可以得出 Flink on YARN 时,TaskManager 数 = Job 的最大并行度 / 每个TaskManager 分配的任务槽数,结果向上取整。例如,一个最大并行度为 10,每个 TaskManager 有 2 个任务槽的作业,就会启动 5 个 TaskManager,如 Web UI 所示。
相关文章:
【大数据】Flink on YARN,如何确定 TaskManager 数
Flink on YARN,如何确定 TaskManager 数 1.问题2.并行度(Parallelism)3.任务槽(Task Slot)4.确定 TaskManager 数 1.问题 在 Flink 1.5 Release Notes 中,有这样一段话,直接上截图。 这说明从 …...
ES节点故障的容错方案
ES节点故障的容错方案 1. es启动加载逻辑1.1 segment和translg组成和分析1.2 es节点启动流程1.3 es集群的初始化和启动过程 2. master高可用2.1 选主逻辑2.1.1 过滤选主的节点列表2.1.2 Bully算法2.1.2 类Raft协议2.1.3 元数据合并 2.2 HA切换 3. 分片高可用3.1 集群分片汇报3.…...
【Flink】FlinkSQL实现数据从Kafka到MySQL
简介 未来Flink通用化,代码可能就会转换为sql进行执行,大数据开发工程师研发Flink会基于各个公司的大数据平台或者通用的大数据平台,去提交FlinkSQL实现任务,学习Flinksql势在必行。 本博客在sql-client中模拟大数据平台的sql编辑器执行FlinkSQL,使用Flink实现数据从Kafka传…...
Unity GC
本文由 简悦 SimpRead 转码, 原文地址 mp.weixin.qq.com 简略版本 在 Unity 中,垃圾回收(Garbage Collection,GC)采用的是基于标记-清除(Mark and Sweep)算法的自动内存管理机制。 基于标记-清…...
Vue源码系列讲解——变化侦测篇【下】(Array的变化侦测)
目录 1. 前言 2. 在哪里收集依赖 3. 使Array型数据可观测 3.1 思路分析 3.2 数组方法拦截器 3.3 使用拦截器 4. 再谈依赖收集 4.1 把依赖收集到哪里 4.2 如何收集依赖 4.3 如何通知依赖 5. 深度侦测 6. 数组新增元素的侦测 7. 不足之处 8. 总结 1. 前言 上一篇文…...
【机器学习笔记】贝叶斯学习
贝叶斯学习 文章目录 贝叶斯学习1 贝叶斯学习背景2 贝叶斯定理3 最大后验假设MAP(Max A Posterior)4 极大似然假设ML(Maximum Likelihood)5 朴素贝叶斯NB6 最小描述长度MDL 1 贝叶斯学习背景 试图发现两件事情的关系(因果关系,先决条件&结论&#x…...
ElasticSearch之倒排索引
写在前面 本文看下es的倒排索引相关内容。 1:正排索引和倒排索引 正排索引就是通过文档id找文档内容,而倒排索引就是通过文档内容找文档id,如下图: 2:倒排索引原理 假定我们有如下的数据: 为了建立倒…...
win11安装mysql8.3.0压缩包版 240206
mysql社区版安装包版windows安装包下载地址 在系统环境变量path无点.的情况下 powershell 可以 .\ 或 ./ 开头表示当前文件夹cmd 可以直接命令或.\开头, 不能./开头 所以 .\ 在cmd和powershell中通用 步骤 在解压目录 .\mysqld --initialize-insecure root无密码初始化.\m…...
数据库索引与优化:深入了解索引的种类、使用与优化
数据库索引与优化:深入了解索引的种类、使用与优化 索引的种类 数据库索引是提高查询速度的重要手段之一,主要分为以下几种类型: 主键索引(Primary Key Index): 唯一标识表中的每一行数据,保…...
React 错误边界组件 react-error-boundary 源码解析
文章目录 捕获错误 hook创建错误边界组件 Provider定义错误边界组件定义边界组件状态捕捉错误渲染备份组件重置组件通过 useHook 控制边界组件 捕获错误 hook getDerivedStateFromError 返回值会作为组件的 state 用于展示错误时的内容 componentDidCatch 创建错误边界组件 P…...
分享66个相册特效,总有一款适合您
分享66个相册特效,总有一款适合您 66个相册特效下载链接:https://pan.baidu.com/s/1jqctaho4sL_iGSNExhWB6A?pwd8888 提取码:8888 Python采集代码下载链接:采集代码.zip - 蓝奏云 学习知识费力气,收集整理更不…...
chagpt的原理详解
GPT(Generative Pre-trained Transformer)是一种基于Transformer架构的生成式预训练模型。GPT-3是其中的第三代,由OpenAI开发。下面是GPT的基本原理: Transformer架构: GPT基于Transformer架构,该架构由Att…...
dockerfile 详细讲解
当编写 Dockerfile 时,你需要考虑你的应用程序所需的环境和依赖项,并将其描述为一系列指令。下面是一个简单的示例,演示如何编写一个用于部署基于 Node.js 的网站的 Dockerfile: Dockerfile # 使用官方 Node.js 镜像作为基础镜像…...
跟着pink老师前端入门教程-day23
苏宁网首页案例制作 设置视口标签以及引入初始化样式 <meta name"viewport" content"widthdevice-width, user-scalableno, initial-scale1.0, maximum-scale1.0, minimum-scale1.0"> <link rel"stylesheet" href"css/normaliz…...
JRT监听程序
本次设计避免以往设计缺陷,老的主要为了保持兼容性,在用的设计就不好调了。 首先,接口抽象时候就不在给参数放仪器ID和处理类了,直接放仪器配置实体,接口实现想用什么属性就用什么属性,避免老方式要扩参数时…...
MCU+SFU视频会议一体化,视频监控,指挥调度(AR远程协助)媒体中心解决方案。
视频互动应用已经是政务和协同办公必备系统,早期的分模块,分散的视频应该不能满足业务需要,需要把视频监控,会议,录存一体把视频资源整合起来,根据客户需求,需要能够多方视频互动,直…...
1184. 欧拉回路(欧拉回路,模板题)
活动 - AcWing 给定一张图,请你找出欧拉回路,即在图中找一个环使得每条边都在环上出现恰好一次。 输入格式 第一行包含一个整数 t,t∈{1,2},如果 t1,表示所给图为无向图,如果 t2,表示所给图为…...
学习 Redis 基础数据结构,不讲虚的。
学习 Redis 基础数据结构,不讲虚的。 一个群友给我发消息,“该学的都学了,怎么就找不到心意的工作,太难了”。 很多在近期找过工作的同学一定都知道了,背诵八股文已经不是找工作的绝对王牌。企业最终要的是可以创造价…...
Android 11 webview webrtc无法使用问题
问题:Android 11 webview 调用webrtc无法使用, 看logcat日志会报如下错误 [ERROR:address_tracker_linux.cc(245)] Could not send NETLINK request: Permission denied (13) 查了下相关的网络权限都有配置了还是不行,还是报这个权限问题 原因࿱…...
嵌入式单片机中晶振的工作原理
晶振在单片机中是必不可少的元器件,只要用到CPU的地方就必定有晶振的存在,那么晶振是如何工作的呢? 什么是晶振 晶振一般指晶体振荡器,晶体振荡器是指从一块石英晶体上按一定方位角切下的薄片,简称为晶片。 石英晶体谐…...
AWS配置内网EC2服务器上网【图形化配置】
第一种方法:创建EC2选择启用分配公网ip 1. 创建vpc 2. 创建子网 3. 创建互联网网关 创建互联网网关 创建互联网网关 ,设置名称即可 然后给网关附加到新建的vpc即可 4. 给新建子网添加路由规则,添加新建的互联网网关然后点击保存更改 5. 新建…...
Android中的MVVM
演变 开发常用的框架包括MVC、MVP和本文的MVVM,三种框架都是为了分离ui界面和处理逻辑而出现的框架模式。mvp、mvvm都由mvc演化而来,他们不属于某种语言的框架,当存在ui页面和逻辑代码时,我们就可以使用这三种模式。 model和vie…...
制作耳机壳的UV树脂和塑料材质相比劣势有哪些?
以下是UV树脂相比塑料材质可能存在的劣势: 价格较高:相比一些常见的塑料材质,UV树脂的价格可能较高。这主要是因为UV树脂的生产过程较为复杂,需要较高的技术和设备支持。加工难度大:虽然UV树脂的加工过程相对简单&…...
CSP-202012-1-期末预测之安全指数
CSP-202012-1-期末预测之安全指数 题目很简单,直接上代码 #include <iostream> using namespace std; int main() {int n, sum 0;cin >> n;for (int i 0; i < n; i){int w, score;cin >> w >> score;sum w * score;}if (sum > 0…...
Doris中的本地routineload环境,用于开发回归测试用例
----------------2024-2-6-更新-------------- doris的routineload,就是从kafka中加载数据到表,特点是定时、周期性的从kafka取数据。 要想在本地开发测试routine load相关功能,需要配置kafka环境,尤其是需要增加routine load回…...
【开源项目阅读】Java爬虫抓取豆瓣图书信息
原项目链接 Java爬虫抓取豆瓣图书信息 本地运行 运行过程 另建项目,把四个源代码文件拷贝到自己的包下面 在代码爆红处按ALTENTER自动导入maven依赖 直接运行Main.main方法,启动项目 运行结果 在本地磁盘上生成三个xml文件 其中的内容即位爬取…...
基于opencv-python模板匹配的银行卡号识别(附源码)
目录 介绍 数字模板处理 银行卡图片处理 导入数字模板 模板匹配及结果 介绍 我们有若干个银行卡图片和一个数字模板图片,如下图 我们的目的就是通过对银行卡图片进行一系列图像操作使得我们可以用这个数字模板检测出银行卡号。 数字模板处理 首先我们先对数…...
JAVA设计模式之建造者模式详解
建造者模式 1 建造者模式介绍 建造者模式 (builder pattern), 也被称为生成器模式 , 是一种创建型设计模式. 定义: 将一个复杂对象的构建与表示分离,使得同样的构建过程可以创建不同的表示。 **建造者模式要解决的问题 ** 建造者模式可以将部件和其组装过程分开…...
ElasticSearch查询语句用法
查询用法包括:match、match_phrase、multi_match、query_string、term 1.match 1.1 不同字段权重 如果需要为不同字段设置不同权重,可以考虑使用bool查询的should子句来组合多个match查询,并为每个match查询设置不同的权重 {"query&…...
美国服务器如何
美国服务器在被选择名单里排名很高,那么美国服务器如何,美国服务器 适用于哪些场景,认可度高吗?接下来小编为您整理发布美国服务器如何的详细情况。 美国服务器通常以其高性能、高可靠性和安全性而受到认可,它们适用于多种业务场…...
dw8 php做购物网站教程/站长之家是干什么的
最近在做驾驶证信息提取识别,中间用到了百度开源的PaddleOCR,在使用的时候需要配置一些环境,其中就包括百度自研的PaddlePaddle深度学习框架。在windows试了试效果之后,发现识别率很高,尤其是在识别中文字符的时候要比…...
wordpress装修公司模板/怎么做好市场宣传和推广
上周,在开发过程中碰见一个需求,总结一下就是:在使用Element-ui级联选择器组件的时候,数据既要懒加载,又能单击选中任意一项。 刚开始我还不以为意,认为是个很简单的需求,信誓旦旦的和产品经理说…...
建设银行社保网站/网站推广优化业务
Ant入门 一,构建ant环境 要使用ant首先要构建一个ant环境,步骤很简单: 1),安装jdk,设置JAVA_HOME ,PATH ,CLASS_PATH(这些应该是看这篇文章的人应该知道的) 2),下载ant 地址www.apache.org找一个你喜欢的版本,或者干脆最新的版本 …...
wordpress双语言设置/短信营销
是否会使用索引,是mysql的关键1.sql性能下降原因查询语句写的不好,连接子查询太多,没有建索引等等索引失效关联Jion表过多服务器参数设置不合适2.索引优化索引是什么?索引就是一种排好序的查找数据结构,常见模型有哈希…...
合肥大型网站设计公/优化大师官方正版下载
千寻爲谁伊人秀,街客无心望花楼,日薄留取痴梦醉,冰残玉轮缺,星寒花葬魂,蝶舞春风依旧,她去山高,恨微微,情绵绵,倚海凭狂澜,无疑回眸江水流,碧海连…...
如何快速提高网站权重/网站推广方案策划书2000
小样本学习&元学习经典论文整理||持续更新 核心思想 本文采用基于图神经网络的算法实现了小样本学习任务,先前基于GNN的方法通常是基于节点标签框架,隐式地建立类内相似性和类间差异性的模型。而本文提出的边标签图卷积神经网络(Edge-la…...