wordpress0基础/关键词seo排名公司
LSTM模型可以在一定程度上学习和预测非平稳的时间序列,其具有强大的记忆和非线性建模能力,可以捕捉到时间序列中的复杂模式和趋势[4]。在这种情况下,LSTM模型可能会自动学习到时间序列的非平稳性,并在预测中进行适当的调整。其作为循环神经网络(RNN)的特殊形式,继承了循环神经网络的优点。首先,利用记忆机制,可以有效提取时间序列数据的时间依赖性。其次,在模型训练时,学习到的权重参数在时间步骤之间是共享的,故对长时间序列的训练具有一定的可拓展性,而且比起传统的神经网络模型,它所需参数数量较少,降低了模型的复杂度。最后,它也具有LSTM神经网络特有的优势,对训练时权重变化不稳定而产生梯度消失和梯度爆炸问题有着不错的改善效果。LSTM单元的主要结构由3个门控制器和记忆细胞组成。其中,输入门控制特征的流向信息,输出门控制特征的输出信息,遗忘门控制特征的去除与遗忘,记忆细胞负责存储细胞状态信息。通过不同功能门的控制,从而解决RNN存在的长期依赖问题[5]。LSTM单元内的计算过程为:
clc
clear
load('data.mat')
data=RTS'
%% 序列的前485个用于训练,后10个用于验证神经网络,然后往后预测10个数据。
dataTrain = data(1:485); %定义训练集
dataTest = data(486:495); %该数据是用来在最后与预测值进行对比的
%% 数据预处理
mu = mean(dataTrain); %求均值
sig = std(dataTrain); %求均差
dataTrainStandardized = (dataTrain - mu) / sig;
%% 输入的每个时间步,LSTM网络学习预测下一个时间步,这里交错一个时间步效果最好。
XTrain = dataTrainStandardized(1:end-1);
YTrain = dataTrainStandardized(2:end);
%% 一维特征lstm网络训练
numFeatures = 1; %特征为一维
numResponses = 1; %输出也是一维
numHiddenUnits = 200; %创建LSTM回归网络,指定LSTM层的隐含单元个数200。可调layers = [ ...sequenceInputLayer(numFeatures) %输入层lstmLayer(numHiddenUnits) % lstm层,如果是构建多层的LSTM模型,可以修改。fullyConnectedLayer(numResponses) %为全连接层,是输出的维数。regressionLayer]; %其计算回归问题的半均方误差模块 。即说明这不是在进行分类问题。%指定训练选项,求解器设置为adam, 1000轮训练。
%梯度阈值设置为 1。指定初始学习率 0.01,在 125 轮训练后通过乘以因子 0.2 来降低学习率。
options = trainingOptions('adam', ...'MaxEpochs',1000, ...'GradientThreshold',1, ...'InitialLearnRate',0.01, ... 'LearnRateSchedule','piecewise', ...%每当经过一定数量的时期时,学习率就会乘以一个系数。'LearnRateDropPeriod',400, ... %乘法之间的纪元数由“ LearnRateDropPeriod”控制。可调'LearnRateDropFactor',0.15, ... %乘法因子由参“ LearnRateDropFactor”控制,可调'Verbose',0, ... %如果将其设置为true,则有关训练进度的信息将被打印到命令窗口中。默认值为true。'Plots','training-progress'); %构建曲线图 将'training-progress'替换为none
net = trainNetwork(XTrain,YTrain,layers,options);
net = predictAndUpdateState(net,XTrain); %将新的XTrain数据用在网络上进行初始化网络状态
[net,YPred] = predictAndUpdateState(net,YTrain(end)); %用训练的最后一步来进行预测第一个预测值,给定一个初始值。这是用预测值更新网络状态特有的。
%% 进行用于验证神经网络的数据预测(用预测值更新网络状态)
for i = 2:20 %从第二步开始,这里进行20次单步预测(10为用于验证的预测值,10为往后预测的值。一共20个)[net,YPred(:,i)] = predictAndUpdateState(net,YPred(:,i-1),'ExecutionEnvironment','cpu'); %predictAndUpdateState函数是一次预测一个值并更新网络状态
end
%% 验证神经网络
YPred = sig*YPred + mu; %使用先前计算的参数对预测去标准化。
rmse = sqrt(mean((YPred(1:10)-dataTest).^2)) ; %计算均方根误差 (RMSE)。
subplot(2,1,1)
plot(dataTrain(1:end)) %先画出前面485个数据,是训练数据。
hold on
idx = 486:(485+20); %为横坐标
plot(idx,YPred(1:20),'.-') %显示预测值
hold off
xlabel("Time")
ylabel("Case")
title("Forecast")
legend(["Observed" "Forecast"])
subplot(2,1,2)
plot(data)
xlabel("Time")
ylabel("Case")
title("Dataset")
%% 继续往后预测2023年的数据
figure(2)
idx = 486:(485+20); %为横坐标
plot(idx,YPred(1:20),'.-') %显示预测值
hold off
net = resetState(net);
MATLAB运行结果如下:
相关文章:

MATLAB实现LSTM时间序列预测
LSTM模型可以在一定程度上学习和预测非平稳的时间序列,其具有强大的记忆和非线性建模能力,可以捕捉到时间序列中的复杂模式和趋势[4]。在这种情况下,LSTM模型可能会自动学习到时间序列的非平稳性,并在预测中进行适当的调整。其作为…...

Kubernetes CNI Calico:Route Reflector 模式(RR) calico IPIP切换RR网络模式
1. 概述 Calico 路由反射模式是一种 BGP 互联方案,用于解决大规模网络中路由信息的分发和同步问题。在 Calico 的路由反射模式中,路由反射器(Route Reflectors)被用来集中管理路由信息,以减少网络中的路由信息数量和减小路由信息的分发规模。 在 Calico 的路由反射模式中…...

探索Gin框架:Golang Gin框架请求参数的获取
前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站https://www.captainbed.cn/kitie。 前言 我们在专栏的前面几篇文章内讲解了Gin框架的路由配置,服务启动等内容。 专栏地址&…...
极值图论基础
目录 一,普通子图禁图 二,Turan问题 三,Turan定理、Turan图 1,Turan定理 2,Turan图 四,以完全二部图为禁图的Turan问题 1,最大边数的上界 2,最大边数的下界 五,…...

word导出链接
java 使用 POI 操作 XWPFDocumen 创建和读取 Office Word 文档基础篇 https://www.cnblogs.com/mh-study/p/9747945.html word标签解析文档 http://www.datypic.com/sc/ooxml/e-w_tbl-1.html...

(delphi11最新学习资料) Object Pascal 学习笔记---第4章第2.5节(重载和模糊调用)
4.2.5 重载和模糊调用 当调用一个重载的函数时,编译器通常会找到匹配的版本并正确工作,或者如果没有任何重载版本具有正确匹配的参数(正如我们刚刚看到的),则会报出错误。 但还有第三种情况:假设编…...

ElementUI Data:Table 表格
ElementUI安装与使用指南 Table 表格 点击下载learnelementuispringboot项目源码 效果图 el-table.vue(Table表格)页面效果图 项目里el-table.vue代码 <script> export default {name: el_table,data() {return {tableData: …...

11.2 OpenGL可编程顶点处理:细分着色器
细分 Tessellation Tessellation(细分)是计算机图形学中的一种技术,用于在渲染过程中提高模型表面的几何细节。它通过在原始图元(如三角形、四边形或补丁)之间插入新的顶点和边,对图元进行细化分割&#x…...

微软正在偷走你的浏览记录,Edge浏览器偷疯了
虽然现在 Edge 浏览器相当强大,甚至在某种程度上更符合中国用户的使用体验;但最近新的Edge浏览器推出后一直在使用的用户应该有感受到,原本的冰清玉洁的转校生慢慢小鸡脚藏不住了,广告越来越多,越来越流氓了。 电脑之前…...

什么是数据库软删除,什么场景下要用软删除?(go GORM硬删除)
文章目录 什么是数据库软删除,什么场景下要用软删除?go GORM硬删除什么是数据库软删除什么场景下要用软删除 什么是数据库软删除,什么场景下要用软删除? go GORM硬删除 使用的是 GORM,默认启用了软删除功能ÿ…...

计算机设计大赛 深度学习+python+opencv实现动物识别 - 图像识别
文章目录 0 前言1 课题背景2 实现效果3 卷积神经网络3.1卷积层3.2 池化层3.3 激活函数:3.4 全连接层3.5 使用tensorflow中keras模块实现卷积神经网络 4 inception_v3网络5 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 *…...

我主编的电子技术实验手册(02)——仪表与电源
本专栏是笔者主编教材(图0所示)的电子版,依托简易的元器件和仪表安排了30多个实验,主要面向经费不太充足的中高职院校。每个实验都安排了必不可少的【预习知识】,精心设计的【实验步骤】,全面丰富的【思考习…...

C语言----内存函数
内存函数主要用于动态分配和管理内存,它直接从指针的方位上进行操作,可以实现字节单位的操作。 其包含的头文件都是:string.h memcpy copy block of memory的缩写----拷贝内存块 格式: void *memcpy(void *dest, const void …...

【力扣】快乐数,哈希集合 + 快慢指针 + 数学
快乐数原题地址 方法一:哈希集合 定义函数 getNext(n) ,返回 n 的所有位的平方和。一直执行 ngetNext(n) ,最终只有 2 种可能: n 停留在 1 。无限循环且不为 1 。 证明:情况 1 是存在的,如力扣的示例一…...

c实现顺序表
目录 c语言实现顺序表 完整代码实现 c语言实现顺序表 顺序表的结构定义: typedef struct vector {int size; // 顺序表的容量int count; // 顺序表现在存储了多少个数据int *data; // 指针指向连续的整型存储空间 } vector;顺序表的结构操作: 1、初始…...

微软为新闻编辑行业推出 AI 辅助项目,记者参加免费课程
2 月 6 日消息,微软当地时间 5 日发布新闻稿宣布与多家新闻机构展开多项基于生成式 AI 的合作。微软表示,其使命是确保新闻编辑室在今年和未来拥有创新。 目前建议企业通过微软官方合作伙伴获取服务,可以合规、稳定地提供企业用户使用ChatGP…...

openssl3.2 - exp - buffer to BIO
文章目录 openssl3.2 - exp - buffer to BIO概述笔记END openssl3.2 - exp - buffer to BIO 概述 openssl的资料看的差不多了, 准备将工程中用到的知识点整理一下. openssl中很多API是以操作文件作为输入的, 也有很多API是以BIO作为输入的. 不管文件是不是受保护的, 如果有可…...

Android 13.0 系统framework修改低电量关机值为3%
1、讲在最前面 系统rom定制开发中,其中在低电量时,系统会自动关机,这个和不同的平台和底层驱动和硬件都有关系,需要结合这些来实际调整这个值,我们可以通过分析源码中电池服务的代码,然后进行修改如何实现…...

【EAI 013】BC-Z: Zero-Shot Task Generalization with Robotic Imitation Learning
论文标题:BC-Z: Zero-Shot Task Generalization with Robotic Imitation Learning 论文作者:Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey Levine, Chelsea Finn 论文原文:https://arxiv.org…...

一文讲透ast.literal_eval() eval() json.loads()
文章目录 一文讲透ast.literal_eval() eval() json.loads()1. ast.literal_eval()2. eval()3. json.loads()4. 总结 一文讲透ast.literal_eval() eval() json.loads() 在Python库中,我们经常会遇到需要将字符串转换为相应对象或数据结构的情况。在这种情况下&#…...

微软.NET6开发的C#特性——类、结构体和联合体
我是荔园微风,作为一名在IT界整整25年的老兵,看到不少初学者在学习编程语言的过程中如此的痛苦,我决定做点什么,下面我就重点讲讲微软.NET6开发人员需要知道的C#特性,然后比较其他各种语言进行认识。 C#经历了多年发展…...

naiveui 上传图片遇到的坑 Upload
我在开发图片上传功能, 需要手动触发上传 但是我调用它内部自定义submit方法, 结果接口一直在报错400 我反反复复的测试了好就, 确定了就是我前端的问题,因为之前一直在做后端的错误排查, 以为是编译问题(因为之前也出现过这个问题) 好 , 我把其中一个参数类型改为String类型, …...

安全之护网(HVV)、红蓝对抗
文章目录 红蓝对抗什么是护网行动?护网分类护网的时间 什么是红蓝对抗红蓝对抗演练的目的什么是企业红蓝对抗红蓝对抗价值参考 红蓝对抗 什么是护网行动? 护网的定义是以国家组织组织事业单位、国企单位、名企单位等开展攻防两方的网络安全演习。进攻方…...

Leetcode 213 打家劫舍 II
题意理解: 你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果…...

【C语言】三子棋游戏实现代码
目录 1.三子棋代码功能介绍 2.三子棋游戏实现步骤 ①打印菜单栏 ②判断是否进入三子棋游戏 ③三子棋游戏基本函数实现 (1)清空(初始化)棋盘函数实现 (2)打印棋盘函数实现 (3࿰…...

docker常用10条容器操作命令
Docker 中一些常用的容器操作命令,我们可以根据需要使用这些命令来管理和操作 Docker 容器。我们这次以Hell-world这个镜像为例来说明: 1. docker pull hello-world #拉取hell-world镜像 2. docker images # 查看本地拉取的镜像 或者可以用 docker im…...

《MySQL 简易速速上手小册》第2章:数据库设计最佳实践(2024 最新版)
文章目录 2.1 规划高效的数据库架构2.1.1 基础知识2.1.2 重点案例:在线电商平台2.1.3 拓展案例 1:博客系统2.1.4 拓展案例 2:库存管理系统 2.2 数据类型和表设计2.2.1 基础知识2.2.2 重点案例:个人健康记录应用2.2.3 拓展案例 1&a…...

利用YOLOv8 pose estimation 进行 人的 头部等马赛克
文章大纲 马赛克几种OpenCV 实现马赛克的方法高斯模糊pose estimation 定位并模糊:三角形的外接圆与膨胀系数实现实现代码实现效果参考文献与学习路径之前写过一个文章记录,怎么对人进行目标检测后打码,但是人脸识别有个问题是,很多人的背影,或者侧面无法识别出来人脸,那…...

【Python 千题 —— 基础篇】查找年龄
Python 千题持续更新中 …… 脑图地址 👉:⭐https://twilight-fanyi.gitee.io/mind-map/Python千题.html⭐ 题目描述 题目描述 班级中有 Tom、Alan、Bob、Candy、Sandy 五个人,他们组成字典 {Tom: 23, Alan: 24, Bob: 21, Candy: 22, Sandy: 21},字典的键是姓名,字典的…...

前后端通讯:前端调用后端接口的五种方式,优劣势和场景
Hi,我是贝格前端工场,专注前端开发8年了,前端始终绕不开的一个话题就是如何和后端交换数据(通讯),本文先从最基础的通讯方式讲起。 一、什么是前后端通讯 前后端通讯(Frontend-Backend Commun…...