使用Python+OpenCV2进行图片中的文字分割(支持竖版)
扣字和分割
把图片中的文字,识别出来,并将每个字的图片抠出来;
import cv2
import numpy as npHIOG = 50
VIOG = 3
Position = []'''水平投影'''
def getHProjection(image):hProjection = np.zeros(image.shape,np.uint8)# 获取图像大小(h,w)=image.shape# 统计像素个数h_ = [0]*hfor y in range(h):for x in range(w):if image[y,x] == 255:h_[y]+=1#绘制水平投影图像for y in range(h):for x in range(h_[y]):hProjection[y,x] = 255# cv2.imshow('hProjection2',cv2.resize(hProjection, None, fx=0.3, fy=0.5, interpolation=cv2.INTER_AREA))# cv2.waitKey(0)return h_def getVProjection(image):vProjection = np.zeros(image.shape,np.uint8);(h,w) = image.shapew_ = [0]*wfor x in range(w):for y in range(h):if image[y,x] == 255:w_[x]+=1for x in range(w):for y in range(h-w_[x],h):vProjection[y,x] = 255# cv2.imshow('vProjection',cv2.resize(vProjection, None, fx=1, fy=0.1, interpolation=cv2.INTER_AREA))# cv2.waitKey(0)return w_def scan(vProjection, iog, pos = 0):start = 0V_start = []V_end = []for i in range(len(vProjection)):if vProjection[i] > iog and start == 0:V_start.append(i)start = 1if vProjection[i] <= iog and start == 1:if i - V_start[-1] < pos:continueV_end.append(i)start = 0return V_start, V_enddef checkSingle(image):h = getHProjection(image)start = 0end = 0for i in range(h):pass#分割
def CropImage(image,dest,boxMin,boxMax):a=boxMin[1]b=boxMax[1]c=boxMin[0]d=boxMax[0]cropImg = image[a:b,c:d]cv2.imwrite(dest,cropImg)#开始识别
def DOIT(rawPic):# 读入原始图像origineImage = cv2.imread(rawPic)# 图像灰度化 #image = cv2.imread('test.jpg',0)image = cv2.cvtColor(origineImage,cv2.COLOR_BGR2GRAY)# cv2.imshow('gray',image)# 将图片二值化retval, img = cv2.threshold(image,127,255,cv2.THRESH_BINARY_INV)# kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))# img = cv2.erode(img, kernel)# cv2.imshow('binary',cv2.resize(img, None, fx=0.3, fy=0.3, interpolation=cv2.INTER_AREA))#图像高与宽(h,w)=img.shape#垂直投影V = getVProjection(img)start = 0V_start = []V_end = []# 对垂直投影水平分割V_start, V_end = scan(V, HIOG)if len(V_start) > len(V_end):V_end.append(w-5)# 分割行,分割之后再进行列分割并保存分割位置for i in range(len(V_end)):#获取行图像if V_end[i] - V_start[i] < 30:continuecropImg = img[0:h, V_start[i]:V_end[i]]# cv2.imshow('cropImg',cropImg)# cv2.waitKey(0)#对行图像进行垂直投影H = getHProjection(cropImg)H_start, H_end = scan(H, VIOG, 40)if len(H_start) > len(H_end):H_end.append(h-5)for pos in range(len(H_start)):# 再进行一次列扫描DcropImg = cropImg[H_start[pos]:H_end[pos], 0:w]d_h, d_w = DcropImg.shape# cv2.imshow("dcrop", DcropImg)sec_V = getVProjection(DcropImg)c1, c2 = scan(sec_V, 0)if len(c1) > len(c2):c2.append(d_w)x = 1while x < len(c1):if c1[x] - c2[x-1] < 12:c2.pop(x-1)c1.pop(x)x -= 1x += 1# cv2.waitKey(0)if len(c1) == 1:Position.append([V_start[i],H_start[pos],V_end[i],H_end[pos]])else:for x in range(len(c1)):Position.append([V_start[i]+c1[x], H_start[pos],V_start[i]+c2[x], H_end[pos]])#根据确定的位置分割字符number=0for m in range(len(Position)):rectMin = (Position[m][0]-5,Position[m][1]-5)rectMax = (Position[m][2]+5,Position[m][3]+5)cv2.rectangle(origineImage,rectMin, rectMax, (0 ,0 ,255), 2)number=number+1#start-cropCropImage(origineImage,'result/' + '%d.jpg' % number,rectMin,rectMax)# cv2.imshow('image',cv2.resize(origineImage, None, fx=0.6, fy=0.6, interpolation=cv2.INTER_AREA))cv2.imshow('image',origineImage)cv2.imwrite('result/' + 'ResultImage.jpg' , origineImage)cv2.waitKey(0)#############################
rawPicPath = r"H:\TEMP\TEXT_PROCCESS\TEST05.jpg"
DOIT(rawPicPath)
#############################
原图片:

分割后文件夹:

重命名
可见此时文件都还是数字为文件名称,那么接下来要利用OCR自动给每个文字图片文件命名
我们使用UMIOCR , UMI-OCR的安装建议去GITHUB上查,windows上部署还是很方便的;
这里使用本机安装好的UMI-OCR 的 API地址 http://127.0.0.1:1224/api/ocr
先定义API调用方法
############################################
import base64
import requests
import json#API访问使用
def UMI_OCR_OPT(url,img_path): # url = "http://127.0.0.1:1224/api/ocr"# img_path= './result/123.jpg'with open(img_path,'rb') as f:image_base64 = base64.b64encode(f.read())image_base64 =str(image_base64,'utf-8')data = {"base64": image_base64,# 可选参数# Paddle引擎模式# "options": {# "ocr.language": "models/config_chinese.txt",# "ocr.cls": False,# "ocr.limit_side_len": 960,# "tbpu.parser": "MergeLine",# }# Rapid引擎模式# "options": {# "ocr.language": "简体中文",# "ocr.angle": False,# "ocr.maxSideLen": 1024,# "tbpu.parser": "MergeLine",# }}headers = {"Content-Type": "application/json"}data_str = json.dumps(data)response = requests.post(url, data=data_str, headers=headers)if response.status_code == 200:res_dict = json.loads(response.text)#检测失败与否if(str(res_dict).find('No text found in image')!=-1):# print("返回失败内容\n", res_dict)return ''print("返回值字典\n", res_dict)resText = res_dict['data'][0]['text']return resTextreturn ''
开始批量调用检测
import easyocrimport shutilerror =''#api地址
uni_orc_url="http://127.0.0.1:1224/api/ocr"
#将所有字体
for i in range(1,285):filePath = "./result/"+str(i)+".jpg"# result = reader.readtext(filePath, detail = 0)result = UMI_OCR_OPT(uni_orc_url,filePath)if(len(result)==0 or result == ''):error+= filePath +'\n'continueprint(result)destPath = "./resultX/"+result[0]+".jpg" print('sour :: '+ filePath)print('dest :: '+ destPath)shutil.copyfile(filePath, destPath)print('error:\n'+error)
然后将能够识别出来的所有文字图片都复制并重命名为该字
效果如下:

相关文章:
使用Python+OpenCV2进行图片中的文字分割(支持竖版)
扣字和分割 把图片中的文字,识别出来,并将每个字的图片抠出来; import cv2 import numpy as npHIOG 50 VIOG 3 Position []水平投影 def getHProjection(image):hProjection np.zeros(image.shape,np.uint8)# 获取图像大小(h,w)image.sh…...
Qt中程序发布及常见问题
1、引言 当我们写好一个程序时通常需要发布给用户使用,那么在Qt中程序又是如何实现发布的呢,这里我就来浅谈一下qt中如何发布程序,以及发布程序时的常见问题。 2、发布过程 2.1、切换为release模式 当我们写qt程序时默认是debug模式&#x…...
C语言第二十三弹---指针(七)
✨个人主页: 熬夜学编程的小林 💗系列专栏: 【C语言详解】 【数据结构详解】 指针 1、sizeof和strlen的对比 1.1、sizeof 1.2、strlen 1.3、sizeof 和 strlen的对比 2、数组和指针笔试题解析 2.1、⼀维数组 2.2、二维数组 总结 1、si…...
用HTML5 + JavaScript绘制花、树
用HTML5 JavaScript绘制花、树 <canvas>是一个可以使用脚本 (通常为JavaScript) 来绘制图形的 HTML 元素。 <canvas> 标签/元素只是图形容器,必须使用脚本来绘制图形。 HTML5 canvas 图形标签基础https://blog.csdn.net/cnds123/article/details/112…...
Science重磅_让大模型像婴儿一样学习语言
英文名称: Grounded language acquisition through the eyes and ears of a single child 中文名称: 通过一个孩子的眼睛和耳朵基于实践学习语言 文章: https://www.science.org/doi/10.1126/science.adi1374 代码: https://github.com/wkvong/multimodalbaby 作者: Wai Keen V…...
Java 数据结构篇-实现红黑树的核心方法
🔥博客主页: 【小扳_-CSDN博客】 ❤感谢大家点赞👍收藏⭐评论✍ 文章目录 1.0 红黑树的说明 2.0 红黑树的特性 3.0 红黑树的成员变量及其构造方法 4.0 实现红黑树的核心方法 4.1 红黑树内部类的核心方法 (1)判断当前…...
【实战】一、Jest 前端自动化测试框架基础入门(中) —— 前端要学的测试课 从Jest入门到TDD BDD双实战(二)
文章目录 一、Jest 前端自动化测试框架基础入门5.Jest 中的匹配器toBe 匹配器toEqual匹配器toBeNull匹配器toBeUndefined匹配器和toBeDefined匹配器toBeTruthy匹配器toBeFalsy匹配器数字相关的匹配器字符串相关的匹配器数组相关的匹配器异常情况的匹配器 6.Jest 命令行工具的使…...
【C语言 - 力扣 - 反转链表】
反转链表题目描述 给你单链表的头节点 head ,请你反转链表,并返回反转后的链表。 题解1-迭代 假设链表为 1→2→3→∅,我们想要把它改成 ∅←1←2←3。 在遍历链表时,将当前节点的 next 指针改为指向前一个节点。由于节点没…...
ctfshow-php特性(web102-web115)
目录 web102 web103 web104 web105 web106 web107 web108 web109 web110 web111 web112 web113 web114 web115 实践是检验真理的 要多多尝试 web102 <?php highlight_file(__FILE__); $v1$_POST[V1]; $v2$_GET[v2]; $v3$_GET[v3]; $v4is_numeric($v2)and is…...
python系统学习Day1
section1 python introduction 文中tips只做拓展,可跳过。 PartOne introduction 首先要对于python这门语言有一个宏观的认识,包括特点和应用场景。 特点分析: 优势 提供了完善的基础代码库,许多功能不必从零编写简单优雅 劣势 运…...
Idea里自定义封装数据警告解决 Spring Boot Configuration Annotation Processor not configured
我们自定对象封装指定数据,封装类上面一个红色警告,虽然不影响我们的执行,但是有强迫症看着不舒服, 去除方式: 在pom文件加上坐标刷新 <dependency><groupId>org.springframework.boot</groupId><…...
【流程图——讲解】
流程图介绍 流程图介绍 流程图介绍 流程图是一种图表,它展示了工作流程或过程中的步骤顺序,它通常由不同的符号表示,每个符号都代表一个步骤或过程中的一个元素,流程图非常有用,因为它们可以提供清晰、视觉化的过程表…...
「计算机网络」物理层
物理层的基本概念 物理层的作用:尽可能屏蔽掉不同传输媒体和通信手段的差异物理层规程:用于物理层的协议主要任务:确定与传输媒体的接口有关的一些特性 机械特性电器特性功能特性过程特性 数据通信的基础知识 数据通信系统的模型 划分为…...
ARM与X86架构的区别与联系
文章目录 1.什么是CPU2.复杂指令集和精简指令集3.ARM架构与X86架构的比较3.1.制造工艺3.2 64位计算3.3 异构计算3.4 功耗 4.ARM和X86的发展现状Reference 1.什么是CPU 中央处理单元(CPU)主要由运算器、控制器、寄存器三部分组成,从字面意思看…...
蓝桥杯每日一题------背包问题(二)
前言 本次讲解背包问题的一些延申问题,新的知识点主要涉及到二进制优化,单调队列优化DP,树形DP等。 多重背包 原始做法 多重背包的题意处在01背包和完全背包之间,因为对于每一个物品它规定了可选的个数,那么可以考虑…...
牛客错题整理——C语言(实时更新)
1.以下程序的运行结果是() #include <stdio.h> int main() { int sum, pad,pAd; sum pad 5; pAd sum, pAd, pad; printf("%d\n",pAd); }答案为7 由于赋值运算符的优先级高于逗号表达式,因此pAd sum, pAd, pad;等价于(…...
CIFAR-10数据集详析:使用卷积神经网络训练图像分类模型
1.数据集介绍 CIFAR-10 数据集由 10 个类的 60000 张 32x32 彩色图像组成,每类 6000 张图像。有 50000 张训练图像和 10000 张测试图像。 数据集分为5个训练批次和1个测试批次,每个批次有10000张图像。测试批次正好包含从每个类中随机选择的 1000 张图像…...
《傲剑狂刀》中的人物性格——龙吟风
在《傲剑狂刀》这款经典武侠题材的格斗游戏中,龙吟风作为一位具有传奇色彩的角色,其性格特征复杂且引人入胜。以下是对龙吟风这一角色的性格特点进行深度剖析: 一、孤高独立的剑客气质 龙吟风的名字本身就流露出一种独特的江湖气息,"吟风"象征着他的飘逸与淡泊名…...
KVM和JVM的虚拟化技术有何区别?
随着虚拟化技术的不断发展,KVM和JVM已成为两种主流的虚拟化技术。尽管它们都提供了虚拟化的解决方案,但它们在实现方式、功能和性能方面存在一些重要的差异。本文将深入探讨KVM和JVM的虚拟化技术之间的区别。 KVM(Kernel-based Virtual Mac…...
LeetCode力扣 面试经典150题 详细题解 (1~5) 持续更新中
目录 1.合并两个有序数组 2.移动元素 3.删除有序数组中的重复项 4.删除排序数组中的重复项 II 5.多数元素 暂时更新到这里,博主会持续更新的 1.合并两个有序数组 题目(难度:简单): 给你两个按 非递减顺序 排列的…...
idea大量爆红问题解决
问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...
家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果
1.获取 authorizationCode: 2.利用 authorizationCode 获取 accessToken:文档中心 3.获取手机:文档中心 4.获取昵称头像:文档中心 首先创建 request 若要获取手机号,scope必填 phone,permissions 必填 …...
接口自动化测试:HttpRunner基础
相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具,支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议,涵盖接口测试、性能测试、数字体验监测等测试类型…...
实战三:开发网页端界面完成黑白视频转为彩色视频
一、需求描述 设计一个简单的视频上色应用,用户可以通过网页界面上传黑白视频,系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观,不需要了解技术细节。 效果图 二、实现思路 总体思路: 用户通过Gradio界面上…...
【C++】纯虚函数类外可以写实现吗?
1. 答案 先说答案,可以。 2.代码测试 .h头文件 #include <iostream> #include <string>// 抽象基类 class AbstractBase { public:AbstractBase() default;virtual ~AbstractBase() default; // 默认析构函数public:virtual int PureVirtualFunct…...
Xela矩阵三轴触觉传感器的工作原理解析与应用场景
Xela矩阵三轴触觉传感器通过先进技术模拟人类触觉感知,帮助设备实现精确的力测量与位移监测。其核心功能基于磁性三维力测量与空间位移测量,能够捕捉多维触觉信息。该传感器的设计不仅提升了触觉感知的精度,还为机器人、医疗设备和制造业的智…...
