当前位置: 首页 > news >正文

Linux_文件系统

假定外部存储设备为磁盘,文件如果没有被使用,那么它静静躺在磁盘上,如果它被使用,则文件将被加载进内存中。故此,可以将文件分为内存文件和磁盘文件。

  • 内存文件
  • 磁盘文件
  • 软、硬链接

一.内存文件

1.1 c语言的文件接口
  • fopen:FILE *fopen(const char *path, const char *mode);
    • mode:
      • r :读方式
      • w:写,打开即清空文件
      • a:追加方式
  • fclose:int fclose(FILE *fp);
  • fwrite:size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream);
  • fgets:char *fgets(char *s, int size, FILE *stream);
  • fputs:int fputs(const char *s, FILE *stream);
  • snprintf:int snprintf(char *str, size_t size, const char *format, …);

在这里插入图片描述

1.2 系统接口

1.2.1 open

image.png

  • 返回值:返回一个文件描述符(下文讨论)
  • pathname:指定文件路径
  • flags:位图,可以用宏来指定打开方式
    • O_RDONLY:读方式
    • O_WRONLY: 写方式
    • O_CREAT: 不存在则创建
    • O_TRUNC: 打开后会清空文件
    • O_APPEND:追加方式打开,不清空文件
  • mode :指定创建文件时的起始权限
// 1.读时的open写法
int fd = open("log.txt", O_RDONLY);// 2.清空写时的open写法
int fd1 = open("log.txt", O_WRONLY | O_CREAT | O_TRUNC);//3.追加写时的open写法
int fd2 = open("log.txt", O_WRONLY | O_CREAT | O_APPEND);

当一个进程要打开文件时,操作系统将文件的属性加载到内存中,根据这些属性创建一个struct file结构体,并且将该结构体与进程控制块task_struct建立联系。

1.2.2 close

image.png

  • fd : 文件描述符,open返回值。
1.2.3 write

image.png

  • count:写入字节数
1.2.4 readimage.png

image.png

1.3 文件描述符-file descriptor

操作系统将文件加载进内存,创建对应的struct file 结构体,并且与struct task_struct建立联系。在Linux中,task_struct 内部有一个 struct files_struct 字段,这个结构体里面有struct file* fd_array[]数组,file descriptor就是这个数组的下标。如图:
image.png

1.3.2 文件描述符本质

文件描述符的本质就是struct file*fd_array 数组中的下标,当操作系统创建文件结构体struct file时,将该结构体地址填入数组中,至此进程与文件建立了联系。

  • 操作系统从开始扫描数组,遇到空位置,则填入地址,给调用进程返回数组下标,即文件描述符。

    image.png
    观察上面代码,发现文件描述符是从3开始的,这是因为c语言中默认打开三个文件,标准输入-stdin,标准输出-stdout,标准错误-stderr,它们对应数组的 0 1 2,stdout和stderr默认都指向显示器。
    image.png

1.4 struct file 与 struct FILE

struct file是内核级别的结构体,而struct FILE是c语言库中定义的结构体,这两者之间没有任何关系。
struct FILE内部有一个文件描述符int fd; 字段。当进程读写文件时,os会根据文件描述符找到对应的struct file结构体,然后进行读写操作。
image.png

1.5 重定向

重定向有三种:输出重定向,追加重定向,输入重定向

  • 输出重定向:我们可以在命令行中输入命令ls . > text,这样原本打印在显示器上的消息就打印到文本text中了,这叫做输出重定向。
  • 追加重定向:输出重定向会先清空文件,然后写入内容,追加重定向不清空文件,在文件末尾追加内容
  • 输入重定向:在命令行中输入cat < text,原本是从键盘读取字符,然后重定向到从text中读取字符 ,这就是输入重定向。

为什么ls . > text可以将打印到显示器上的数据打印到text中的呢?在Linux中,命令ls是一个程序,它也是用c语言编写的,所以是用printf来进行打印的,而printf默认会打印到stdout对应的文件中,stdout中的fd为1,如果我们将数组下标为1的元素内容从显示器改变为目标文件,那么这样就做到了将打印到显示器上的数据打印到text中。输入重定向也是同理,改变文件描述符的指向即可。即:重定向的原理就是改变数组元素的指向。这种改变是上层无法获知的,所以stdout依旧认为它对应的文件是显示器。
image.png

1.5.1 重定向的三种方式
  1. 命令行

./test > text 2>&1 : 将test的执行结果输出到text中,并且将1号文件描述符的内容靠别到2号文件描述符中,即,stderr也会输出到text中
./test 1>log 2>err :将标准输出改变为log,标准错误改变为err

  1. dup2(int oldfd, int newfd);
  • 例如dup2(3, 2); 将3号文件描述符的内容拷贝到2号文件描述符中
  1. 先关闭1号文件描述符,然后调用open
close(1);
int fd = open("log.txt", O_WRONLY|O_CREAT|_TRUNC);     // 1

1.6 内核级缓冲区和用户级缓冲区

c语言库中struct FILE结构体中有一个缓冲区,用来暂存数据,这个缓冲区叫做用户级缓冲区。内核结构体struct file 中有一个缓冲区,用来暂存数据,这个缓冲区叫做内核级缓冲区。缓冲区的目的是为了提高IO效率。
用户级缓冲区的刷新策略:‘

  1. 无缓冲
  2. 行缓冲(显示器) :遇到换行符将数据刷新到内核级缓冲区
  3. 全缓存(普通文件):当缓冲区满了才将数据刷新到内核级缓冲区

内核级缓冲区的刷新策略由os系统决定,当然我们可以调用fsync()强制刷新。

1.6.1 数据流动方式

当程序调用printf函数时,先将字符串拷贝到用户缓冲区,然后结合相关刷新策略,调用write函数将字符串从用户缓冲区拷贝到内核缓冲区,最后os结合刷新策略将数据刷新到外设中,这就是数据的流动方式。共经历三次拷贝。
image.png

1.6.2 代码示例-缓冲区
#include<stdio.h>
#include<unistd.h>
#include<fcntl.h>
#include<sys/types.h>
#include<sys/stat.h>
#include<string.h>int main()
{//  情况1printf("hello world!\n");//  情况2  printf("hello world!");const char* msg = "tieite\n"; write(1,msg, strlen(msg)), fork();return 0;
}
  1. 情况1:输出结果:image.png
  2. 情况2:输出结果:image.png

为什么会有这样奇怪的结果呢?这与缓冲区的刷新策略有关?因为printf默认输出到显示器,而显示器的刷新策略是行刷新,所以情况1正确执行。而情况2中,没有换行符,所以数据留在用户缓冲区中,没有刷新到内核缓冲区,等调用fork的时候,创建子进程,子进程又继承了父进程的代码和数据,故此就有了两份数据“hello world!”当父子进程退出时,都会刷新用户缓冲区,于是内核缓冲区中就有两份hello world。

二.磁盘文件

2.1 磁盘

磁盘是计算机主要的存储介质,可以存储大量的二进制数据,并且断电后也能保持数据不丢失。早期计算机使用的磁盘是软磁盘(Floppy Disk,简称软盘),如今常用的磁盘是硬磁盘([Hard disk](https://baike.baidu.com/item/Hard disk/2806058?fromModule=lemma_inlink),简称硬盘)。现在的pc大部分都用的是SSD固态硬盘(电)。

2.2 磁盘的物理结构

image.png

  • 磁盘中有许多盘片,每一个盘片都有两个盘面,盘面上有若干磁道,磁道由若干扇区组成,磁盘的基本存储单元是扇区(512字节),多个盘片同半径的所有磁道构成一个柱面

image.png

2.3 硬件寻址方法-CHS

确定一个扇区的方式:先定位在哪个盘面上(磁头head),然后在定义哪个柱面cylinder(磁道),最后根据扇区(sector)编号即可定位某一个扇区。这种寻址方法也叫做CHS定位法。

2.4 操作系统寻址方式-LBA

操作系统的寻址方式和硬件的寻址方式需要解耦合,所以操作系统需要有一套新的地址。os将盘面逻辑抽象成线性的(类似以前的那种磁带全部展开后)。
image.png
将这样的结构看作一个数组,每一个扇区占一个数组下标,这样就可以轻易的获取每个扇区的地址。但是操作系统一次IO的基本单位是块(4KB),所以将8个扇区看作一个块,然后重新抽象得到下图。下面这样的地址叫做LBA-逻辑块地址。磁盘也叫做块设备,以块为单位进行IO。
image.png

2.5 磁盘分区管理

我们电脑上只带有一块盘,但是为了更好的管理,所以将盘分为若干区,为了更好的管理一个区(区等同于c盘,d盘),又将区分为若干组。每个组内有许多字段。
image.png
Linux是将文件内容和属性分开存储的。

  • Boot Block:存储了OS系统镜像以及开机启动的一些程序。
  • Super Block(SB):存储了当前区的文件系统相关的属性,如文件系统名字,整个分区的情况,非常重要,损坏的话一个分区全部不能用,因此要在每个分组内做备份。Linux用的Ext系列的文件系统。
  • Group Descriptor Table(GDT):存储了整个分组的情况
  • Block Bitmap:位图结构,分别对应Data Blocks中的块是否可用
  • Inode Bitmap:位图结构,对应Inode Table中的Inode是否有效
  • Inode Table:存储文件属性。文件属性的集合叫做Inode节点,每一个Inode节点都有一个Inode编号(文件id)。struct Inode{ int inode_num ; int block[NUM];///....};
  • Data Blocks:存储文件内容,为了建立文件属性和内容的联系,故此每个Inode节点里面都有一个数组,指明哪个块是属于本文件,可用建立直接映射,二级映射,三级映射。

os查找文件:
ls -li :查看当前目录下所有文件的inode编号

  1. 先找到文件对应的Inode编号
  2. 在Inode Table中找到Inode节点
  3. 根据Inode节点获得其内容块的地址、

2.6 Inode节点
struct inode
{int inode_number;    //inode 编号int ref_count;       // 硬链接数int modes;           //权限size_t uid;size_t size;//....int databloacks[NUM];  //内容
};
  • inode里面并没有文件名,因为操作系统并不需要文件名来标识文件,而是通过inode_编号来标识文件的。文件名只是给用户看的。
  • 我们用touch命令的时候,是os先遍历访问InodeBitmap寻找空闲的Inode Table,创建Inode,然后在当前目录下用Inode编号和文件名建立一个映射关系。目录也是一个文件,目录里面存储的是文件名和Inode编号的映射关系
  • 增删查改文件都是先根据文件名找到Inode编号

三.软、硬链接

3.1 软链接

ln -s myfile myfile-soft

  • myfile-soft为myfile的链接文件,这个链接文件的内容为myfile的路径。
  • 软链接的作用:便于执行程序,类似于Windows中的桌面快捷方式

image.png

3.2 硬链接

ln myfile myfile-hard

  • 给myfile建立一个硬链接文件myfile-hard

image.png
功能:
Linux下,每一个目录下都有两个特殊目录. .. ,一个点代表当前路径,两个点代表上级路径,为什么呢?因为一个点是当前路径的硬链接,两个点是上级路径的硬链接。这两个特殊路径使得路径切换更加容易。

  • Linux下,不容许用户给目录建立硬链接,防止出现环路问题,而. .. 是操作系统可用识别的特殊路径。

image.png

3.3软硬链接的区别
  • 通过观察创建的文件inode编号,可用知道硬链接并没有新建inode节点,而是和myfile指向同一个节点
  • 软链接新建了一个文件,其有自己的inode节点和内容
  • 硬链接数:类似于引用计数,当值为0的时候,就会释放inode节点。

image.png

相关文章:

Linux_文件系统

假定外部存储设备为磁盘&#xff0c;文件如果没有被使用&#xff0c;那么它静静躺在磁盘上&#xff0c;如果它被使用&#xff0c;则文件将被加载进内存中。故此&#xff0c;可以将文件分为内存文件和磁盘文件。 内存文件 磁盘文件 软、硬链接 一.内存文件 1.1 c语言的文件接口 …...

算法沉淀——链表(leetcode真题剖析)

算法沉淀——链表 01.两数相加02.两两交换链表中的节点03.重排链表04.合并 K 个升序链表05.K个一组翻转链表 链表常用技巧 1、画图->直观形象、便于理解 2、引入虚拟"头节点" 3、要学会定义辅助节点&#xff08;比如双向链表的节点插入&#xff09; 4、快慢双指针…...

Flink从入门到实践(一):Flink入门、Flink部署

文章目录 系列文章索引一、快速上手1、导包2、求词频demo&#xff08;1&#xff09;要读取的数据&#xff08;2&#xff09;demo1&#xff1a;批处理&#xff08;离线处理&#xff09;&#xff08;3&#xff09;demo2 - lambda优化&#xff1a;批处理&#xff08;离线处理&…...

python分离字符串 2022年12月青少年电子学会等级考试 中小学生python编程等级考试二级真题答案解析

目录 python分离字符串 一、题目要求 1、编程实现 2、输入输出 二、算法分析 三、程序代码 四、程序说明 五、运行结果 六、考点分析 七、 推荐资料 1、蓝桥杯比赛 2、考级资料 3、其它资料 python分离字符串 2022年12月 python编程等级考试级编程题 一、题目要…...

Excel练习:折线图突出最大最小值

Excel练习&#xff1a;折线图突出最大最小值 ​​ 要点&#xff1a;NA值在折现图中不会被绘制&#xff0c;看似一条线&#xff0c;实际是三条线。换成0值和""都不行。 ‍ 查看所有已分享Excel文件-阿里云 ‍ 学习的这个视频&#xff1a;Excel折线图&#xff0c…...

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之MenuItem组件

鸿蒙&#xff08;HarmonyOS&#xff09;项目方舟框架&#xff08;ArkUI&#xff09;之MenuItem组件 一、操作环境 操作系统: Windows 10 专业版、IDE:DevEco Studio 3.1、SDK:HarmonyOS 3.1 二、MenuItem组件 用来展示菜单Menu中具体的item菜单项。 子组件 无。 接口 Men…...

Mockito测试框架中的方法详解

这里写目录标题 第一章、模拟对象1.1&#xff09;①mock()方法&#xff1a;1.2&#xff09;②spy()方法&#xff1a; 第二章、模拟对象行为2.1&#xff09;模拟方法调用①when()方法 2.2&#xff09;模拟返回值②thenReturn(要返回的值)③doReturn() 2.3&#xff09;模拟并替换…...

Atcoder ABC339 A - TLD

TLD 时间限制&#xff1a;2s 内存限制&#xff1a;1024MB 【原题地址】 所有图片源自Atcoder&#xff0c;题目译文源自脚本Atcoder Better! 点击此处跳转至原题 【问题描述】 【输入格式】 【输出格式】 【样例1】 【样例输入1】 atcoder.jp【样例输出1】 jp【样例说明…...

企业级DevOps实战

第1章 Zookeeper服务及MQ服务 Zookeeper&#xff08;动物管理员&#xff09;是一个开源的分布式协调服务&#xff0c;目前由Apache进行维护。 MQ概念 MQ&#xff08;消息队列&#xff09;是一种应用程序之间的通信方法&#xff0c;应用程序通过读写出入队列的消息&#xff0…...

C++中的new和delete

1.new和delete的语法 我们知道C语言的内存管理方式是malloc、calloc、realloc和free&#xff0c;而我们的C中除了可以使用这些方式之外还可以选择使用new和delete来进行内存管理。 new和delete的主要语法如下 从上面的代码我们只能知道new要比malloc好写一些&#xff0c;但是其…...

rtt设备io框架面向对象学习-dac设备

目录 1.dac设备基类2.dac设备基类的子类3.初始化/构造流程3.1设备驱动层3.2 设备驱动框架层3.3 设备io管理层 4.总结5.使用 1.dac设备基类 此层处于设备驱动框架层。也是抽象类。 在/ components / drivers / include / drivers 下的dac.h定义了如下dac设备基类 struct rt_da…...

腾讯云幻兽帕鲁服务器配置怎么选择合适?

腾讯云幻兽帕鲁服务器配置怎么选&#xff1f;根据玩家数量选择CPU内存配置&#xff0c;4到8人选择4核16G、10到20人玩家选择8核32G、2到4人选择4核8G、32人选择16核64G配置&#xff0c;腾讯云百科txybk.com来详细说下腾讯云幻兽帕鲁专用服务器CPU内存带宽配置选择方法&#xff…...

796. 子矩阵的和

Problem: 796. 子矩阵的和 文章目录 思路解题方法复杂度Code 思路 这是一个二维前缀和的问题。二维前缀和的主要思想是预处理出一个二维数组&#xff0c;使得每个位置(i, j)上的值表示原数组中从(0, 0)到(i, j)形成的子矩阵中所有元素的和。这样&#xff0c;对于任意的子矩阵(x…...

如何在 Python 中处理 Unicode

介绍 Unicode 是世界上大多数计算机的标准字符编码。它确保文本&#xff08;包括字母、符号、表情符号&#xff0c;甚至控制字符&#xff09;在不同设备、平台和数字文档中显示一致&#xff0c;无论使用的操作系统或软件是什么。它是互联网和计算机行业的重要组成部分&#xf…...

CSDN文章导出PDF整理状况一览

最近CSDN有了导出文章PDF功能&#xff0c;导出的PDF还可以查询&#xff0c; 因此&#xff0c;把文章导出PDF&#xff0c;备份一下自己的重要资料。 目前整理内容如下 No.文章标题整理时间整理之后 文章更新Size &#xff08;M&#xff09;10001_本地电脑-开发相关软件保持位…...

jmeter-05变量(用户定义变量,用户参数,csv文档参数化)

文章目录 一、jmeter有三种变量二、用户定义变量(这个更多的可以理解为全局变量)1、设置2、引用三、用户参数(可以理解为局部变量)1、设置2、引用3、用户参数化要配合线程组的线程数使用4、结果五、csv文档参数1、创建csv文件2、设置2、引用csv文件可以配合线程组的线程数,…...

CSS之水平垂直居中

如何实现一个div的水平垂直居中 <div class"content-wrapper"><div class"content">content</div></div>flex布局 .content-wrapper {width: 400px;height: 400px;background-color: lightskyblue;display: flex;justify-content:…...

2.8日学习打卡----初学RabbitMQ(三)

2.8日学习打卡 一.springboot整合RabbitMQ 之前我们使用原生JAVA操作RabbitMQ较为繁琐&#xff0c;接下来我们使用 SpringBoot整合RabbitMQ&#xff0c;简化代码编写 创建SpringBoot项目&#xff0c;引入RabbitMQ起步依赖 <!-- RabbitMQ起步依赖 --> <dependency&g…...

Unity学习笔记(零基础到就业)|Chapter02:C#基础

Unity学习笔记&#xff08;零基础到就业&#xff09;&#xff5c;Chapter02:C#基础 前言一、复杂数据&#xff08;变量&#xff09;类型part01&#xff1a;枚举数组1.特点2.枚举&#xff08;1&#xff09;基本概念&#xff08;2&#xff09;申明枚举变量&#xff08;3&#xff…...

容器化的基础概念:不可变基础设施解释:将服务器视为乐高积木,而非橡皮泥。

不可变基础设施解释&#xff1a;将服务器视为乐高积木&#xff0c;而非橡皮泥。 想象一下用乐高积木代替橡皮泥进行搭建。使用橡皮泥时&#xff0c;您可以直接塑形和改变它。而使用乐高积木&#xff0c;您需要逐个零件搭建特定结构&#xff0c;并在需要时整体替换它们。这就是…...

智胜未来,新时代IT技术人风口攻略-第二版(弃稿)

文章目录 抛砖引玉 鸿蒙生态小科普焦虑之下 理想要落到实处校园鼎力 鸿蒙发展不可挡培训入场 机构急于吃红利企业布局 鸿蒙应用规划动智胜未来 技术人风口来临 鸿蒙已经成为行业的焦点&#xff0c;未来的发展潜力无限。作为一名程序员兼UP主&#xff0c;我非常荣幸地接受了邀请…...

Git分支和迭代流程

Git分支 feature分支&#xff1a;功能分支 dev分支&#xff1a;开发分支 test分支&#xff1a;测试分支 master分支&#xff1a;生产环境分支 hotfix分支&#xff1a;bug修复分支。从master拉取&#xff0c;修复并测试完成merge回master和dev。 某些团队可能还会有 reale…...

数据库管理-第150期 Oracle Vector DB AI-02(20240212)

数据库管理150期 2024-02-12 数据库管理-第150期 Oracle Vector DB & AI-02&#xff08;20240212&#xff09;1 LLM2 LLM面临的挑战3 RAG4 向量数据库LLM总结 数据库管理-第150期 Oracle Vector DB & AI-02&#xff08;20240212&#xff09; 作者&#xff1a;胖头鱼的鱼…...

MySQL双写机制

双写机制 问题的出现 在发生数据库宕机时&#xff0c;可能Innodb正在写入某个页到表中&#xff0c;但是这个页只写了一部分&#xff0c;这种情况被称为部分写失效&#xff0c;虽然innodb会先写重做日志,在修改页&#xff0c;但是重做日志中记录的是对页的物理操作&#xff0c;但…...

uniapp的配置和使用

①安装环境和编辑器 注册小程序账号 微信开发者工具下载 uniapp 官网 HbuilderX 下载 首先先下载Hbuilder和微信开发者工具 &#xff08;都是傻瓜式安装&#xff09;&#xff0c;然后注册小程序账号&#xff1a; 拿到appid&#xff1a; ②简单通过demo使用微信开发者工具和…...

【ES】--Elasticsearch的分词器深度研究

目录 一、问题描述及分析二、analyze分析器原理三、 multi-fields字段支持多场景搜索(如同时简繁体、拼音等)1、ts_match_analyzer配置分词2、ts_match_all_analyzer配置分词3、ts_match_1_analyzer配置分词4、ts_match_2_analyzer配置分词5、ts_match_3_analyzer配置分词6、ts…...

【Langchain Agent研究】SalesGPT项目介绍(三)

【Langchain Agent研究】SalesGPT项目介绍&#xff08;二&#xff09;-CSDN博客 上节课&#xff0c;我们介绍了salesGPT项目的初步的整体结构&#xff0c;poetry脚手架工具和里面的run.py。在run.py这个运行文件里&#xff0c;引用的最主要的类就是SalesGPT类&#xff0c;今天我…...

Java安全 URLDNS链分析

Java安全 URLDNS链分析 什么是URLDNS链URLDNS链分析调用链路HashMap类分析URL类分析 exp编写思路整理初步expexp改进最终exp 什么是URLDNS链 URLDNS链是Java安全中比较简单的一条利用链&#xff0c;无需使用任何第三方库&#xff0c;全依靠Java内置的一些类实现&#xff0c;但…...

【网站项目】026校园美食交流系统

&#x1f64a;作者简介&#xff1a;拥有多年开发工作经验&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。&#x1f339;赠送计算机毕业设计600个选题excel文件&#xff0c;帮助大学选题。赠送开题报告模板&#xff…...

使用raw.gitmirror.com替换raw.githubusercontent.com以解决brew upgrade python@3.12慢的问题

MacOS系统上&#xff0c;升级python3.12时&#xff0c;超级慢&#xff0c;而且最后还失败了。看了日志&#xff0c;发现是用curl从raw.githubusercontent.com上下载Python安装包超时了。 解决方案一&#xff1a;开启翻墙工具&#xff0c;穿越围墙 解决方案二&#xff1a;使用…...

深度学习的进展

#深度学习的进展# 深度学习的进展 深度学习是人工智能领域的一个重要分支&#xff0c;它利用神经网络模拟人类大脑的学习过程&#xff0c;通过大量数据训练模型&#xff0c;使其能够自动提取特征、识别模式、进行分类和预测等任务。近年来&#xff0c;深度学习在多个领域取得…...

[高性能] - 缓存架构

对于交易系统来说&#xff0c;低延时是核心业务的基本要求。因此需要对业务进行分级&#xff0c;还需要对数据按质量要求进行分类&#xff0c;主要包含两个维度&#xff1a;重要性&#xff0c;延时要求&#xff0c;数据质量。共包含以下三种场景&#xff1a; 1. 重要 延时性要…...

django实现外键

一&#xff1a;介绍 在Django中&#xff0c;外键是通过在模型字段中使用ForeignKey来实现的。ForeignKey字段用于表示一个模型与另一个模型之间的多对一关系。这通常用于关联主键字段&#xff0c;以便在一个模型中引用另一个模型的相关记录。 下面是一个简单的例子&#xff0…...

飞天使-k8s知识点14-kubernetes散装知识点3-Service与Ingress服务发现控制器

文章目录 Service与Ingress服务发现控制器存储、配置与角色 Service与Ingress服务发现控制器 在 Kubernetes 中&#xff0c;Service 和 Ingress 是两种不同的资源类型&#xff0c;它们都用于处理网络流量&#xff0c;但用途和工作方式有所不同。Service 是 Kubernetes 中的一个…...

任务调度

1.学习目标 1.1 定时任务概述 1.2 jdk实现任务调度 1.3 SpringTask实现任务调度 1.4 Spring-Task 分析 1.5 Cron表达式 https://cron.qqe2.com/ 2. Quartz 基本应用 2.1 Quartz 基本介绍 2.2 Quartz API介绍 2.3 入门案例 <dependency> <groupId>org.springframe…...

深刻反思现代化进程:20世纪与21世纪的比较分析及东西方思想家的贡献

深刻反思现代化进程&#xff1a;20世纪与21世纪的比较分析及东西方思想家的贡献 摘要&#xff1a;随着人类社会的快速发展&#xff0c;现代化已成为全球范围内的普遍追求。然而&#xff0c;20世纪至21世纪的现代化进程并非一帆风顺&#xff0c;它伴随着环境破坏、社会不平等和文…...

【FTP讲解】

FTP讲解 1. 介绍2. 工作原理3. 传输模式4. 安全5. 设置FTP服务器6. FTP命令 1. 介绍 FTP&#xff08;File Transfer Protocol&#xff09;是“文件传输协议”的英文缩写&#xff0c;它是用于在网络上进行数据传输的一种协议。FTP是因特网上使用最广泛的协议之一&#xff0c;它…...

java面试题整理

2023.2.14&#xff08;第二天&#xff09; 数组是不是对象&#xff1f; 在Java中&#xff0c;数组是对象。数组是一种引用类型&#xff0c;它可以存储固定大小的相同类型的元素序列。在Java中&#xff0c;数组是通过new关键字创建的&#xff0c;它们在内存中被分配为对象&…...

探索NLP中的N-grams:理解,应用与优化

简介 n-gram[1] 是文本文档中 n 个连续项目的集合&#xff0c;其中可能包括单词、数字、符号和标点符号。 N-gram 模型在许多与单词序列相关的文本分析应用中非常有用&#xff0c;例如情感分析、文本分类和文本生成。 N-gram 建模是用于将文本从非结构化格式转换为结构化格式的…...

JAVA-数组乱序

实现步骤 假设有一组数组numbers从数组中最后一个元素开始遍历设置一个随机数作为循环中遍历到的元素之前的所有元素的下标&#xff0c;即可从该元素之前的所有元素中随机取出一个每次将随机取出的元素与遍历到的元素交换&#xff0c;即可完成乱序 实例如下&#xff1a; im…...

Stable Diffusion 模型下载:majicMIX reverie 麦橘梦幻

本文收录于《AI绘画从入门到精通》专栏,专栏总目录:点这里。 文章目录 模型介绍生成案例案例一案例二案例三案例四案例五案例六案例七案例八案例九案例十...

Java开发四则运算-使用递归和解释器模式

使用递归和解释器模式 程序结构设计具体实现1. 先上最重要的实现类&#xff1a;ExpressionParser&#xff08;最重要&#xff09;2. 再上上下文测试代码&#xff1a;Context&#xff08;程序入口&#xff0c;稍重要&#xff09;3. 使用到的接口和数据结构&#xff08;不太重要的…...

[NSSCTF]-Web:[SWPUCTF 2021 新生赛]easyrce解析

先看网页 代码审计&#xff1a; error_reporting(0); &#xff1a;关闭报错&#xff0c;代码的错误将不会显示 highlight_file(__FILE__); &#xff1a;将当前文件的源代码显示出来 eval($_GET[url]); &#xff1a;将url的值作为php代码执行 解题&#xff1a; 题目既然允许…...

5.深入理解箭头函数 - JS

什么是箭头函数&#xff1f; 箭头函数是指通过箭头函数表达式创建的函数&#xff0c;是匿名函数。 箭头函数表达式的语法更简洁&#xff0c;但语义有差异&#xff0c;所以用法上也有一些限制。尽管如此&#xff0c;箭头函数依旧被广泛运用在需要执行“小函数”的场景。 箭头…...

高效的工作学习方法

1.康奈尔笔记法 在这里插入图片描述 2. 5W2H法 3. 鱼骨图分析法 4.麦肯锡7步分析法 5.使用TODOLIST 6.使用计划模板&#xff08;年月周&#xff09; 7. 高效的学习方法 成年人的学习特点&#xff1a; 快速了解一个领域方法 沉浸式学习方法&#xff1a; 沉浸学习的判据&am…...

【MySQL】-17 MySQL综合-3(MySQL创建数据库+MySQL查看数据库+MySQL修改数据库+MySQL删除数据库+MySQL选择数据库)

MySQL创建数据库查看数据库修改数据库删除数据库选择数据库 一 MySQL创建数据库实例1&#xff1a;最简单的创建 MySQL 数据库的语句实例2&#xff1a;创建 MySQL 数据库时指定字符集和校对规则 二 MySQL查看或显示数据库实例1&#xff1a;查看所有数据库实例2&#xff1a;创建并…...

【教学类-46-08】20240212立体鱼1.0

前期做了一个立体春字 作品展示 背景需求&#xff1a; 在南浔古镇的非遗文化馆里看到一个新年活动折纸——年年有鱼挂饰 我从网上搜索教程&#xff0c;完全可以用15*15的手工纸给孩子们做一套。 折纸教程 视频暂时不能查看https://haokan.baidu.com/v?pdwisenatural&vid1…...

【JVM篇】什么是jvm

文章目录 &#x1f354;什么是Java虚拟机&#x1f6f8;Java虚拟机有什么用&#x1f339;Java虚拟机的功能&#x1f388;Java虚拟机的组成 &#x1f354;什么是Java虚拟机 JVM指的是Java虚拟机&#xff0c;本质上是一个运行在计算机上的程序&#xff0c;可以运行 Java字节码文件…...

Vulnhub靶场 DC-9

目录 一、环境搭建 二、信息收集 1、主机发现 2、指纹识别 三、漏洞复现 1、dirsearch目录探测 2、sqlmap注入测试 3、文件包含漏洞 4、Knockd敲门服务 5、ssh爆破 ​​​​​​​6、提权 四、提取flag 一、环境搭建 Vulnhub靶机下载&#xff1a; 官网地址&#xff1a;https://…...

day2-理解 linux 云计算

1.解释服务器是什么&#xff1b; 服务器是一种高性能计算机&#xff0c;它的主要功能是提供计算服务和资源给其他计算机使用。在网络环境中&#xff0c;服务器扮演着重要的角色&#xff0c;它们可以存储和管理大量的数据&#xff0c;处理网络请求&#xff0c;提供应用程序运行…...