图表示学习 Graph Representation Learning chapter2 背景知识和传统方法
图表示学习 Graph Representation Learning chapter2 背景知识和传统方法
- 2.1 图统计和核方法
- 2.1.1 节点层次的统计和特征
- 节点的度
- 节点中心度
- 聚类系数
- Closed Triangles, Ego Graphs, and Motifs
- 图层次的特征和图的核
- 节点袋
- Weisfieler–Lehman核
- Graphlets和基于路径的方法
- 邻域重叠检测
2.1 图统计和核方法
2.1.1 节点层次的统计和特征

节点的度
d u = ∑ v ∈ V A ( u , v ) (2.1) d_u = \sum_{v\in \mathcal{V}} A(u, v)\tag{2.1} du=v∈V∑A(u,v)(2.1)
需要说明的是,在有向和加权图中,度可以区分为不同的概念。例如入度和出度之类的。不管怎么说,这个特征在传统机器学习中都是十分重要的。
节点中心度
e u = 1 λ ∑ v ∈ V A ( u , v ) e v , ∀ u ∈ V (2.2) e_u = \frac{1}{\lambda}\sum_{v\in \mathcal{V}}A(u, v)e_v, \forall u\in \mathcal{V}\tag{2.2} eu=λ1v∈V∑A(u,v)ev,∀u∈V(2.2)
一种常见的方式是利用特征向量中心度,我们定义每个节点的中心度为周围所有中心度的均值,其中 λ \lambda λ是一个常数。
求解这一过程,可以写作如下形式: λ e = A e (2.3) \lambda e = Ae\tag{2.3} λe=Ae(2.3)
如果我们期望所有的中心度都是正的,我们可以应用Perron-Frobenius Theorem,即对A求解特征向量。
此外我们也可以通过迭代法如下: e ( t + 1 ) = A e ( t ) (2.4) e^{(t+1)}=Ae^{(t)}\tag{2.4} e(t+1)=Ae(t)(2.4)
如果我们设 e 0 = ( 1 , 1 , . . . , 1 ) T e^0=(1,1,...,1)^T e0=(1,1,...,1)T那么每次迭代后的结果是截至T步时,经过的次数,由此可以得到重要性。
聚类系数
用于衡量节点局部邻域封闭三角形的比例。
c u = ∣ ( v 1 , v 2 ) ∈ E : v 1 , v 2 ∈ N ( u ) ∣ C d u 2 (2.5) c_u=\frac{|(v_1,v_2)\in \mathcal{E}:v_1,v_2\in \mathcal{N}(u)|}{C_{d_u}^2}\tag{2.5} cu=Cdu2∣(v1,v2)∈E:v1,v2∈N(u)∣(2.5)
其中 N ( u ) = { v ∈ V : ( u , v ) ∈ E } \mathcal{N}(u)=\{v\in \mathcal{V}:(u,v)\in \mathcal{E}\} N(u)={v∈V:(u,v)∈E}也就是所有的相邻节点构成的集合。
这一特征描述了节点附近结构的紧密程度。
Closed Triangles, Ego Graphs, and Motifs
略
图层次的特征和图的核
节点袋
单纯综合节点的特征。
Weisfieler–Lehman核
一种迭代邻域聚合方法。

Graphlets和基于路径的方法
Graphlets:计算不同子图结构出现次数。具体方式为,枚举所有可能的子图结构,然后统计出现的次数。
基于路径,则是统计类似于最短路之类的。
邻域重叠检测
未完待续。
相关文章:
图表示学习 Graph Representation Learning chapter2 背景知识和传统方法
图表示学习 Graph Representation Learning chapter2 背景知识和传统方法 2.1 图统计和核方法2.1.1 节点层次的统计和特征节点的度 节点中心度聚类系数Closed Triangles, Ego Graphs, and Motifs 图层次的特征和图的核节点袋Weisfieler–Lehman核Graphlets和基于路径的方法 邻域…...
OpenMVG(计算两个球形图像之间的相对姿态、细化重建效果)
目录 1 Bundle Adjustment(细化重建效果) 2 计算两个球形图像之间的相对姿态 1 Bundle Adjustment(细化重建效果) 数...
【QT+QGIS跨平台编译】之三十四:【Pixman+Qt跨平台编译】(一套代码、一套框架,跨平台编译)
文章目录 一、Pixman介绍二、文件下载三、文件分析四、pro文件五、编译实践一、Pixman介绍 Pixman是一款开源的软件库,提供了高质量的像素级图形处理功能。它主要用于在图形渲染、合成和转换方面进行优化,可以帮助开发人员在应用程序中实现高效的图形处理。 Pixman的主要特…...
2.17学习总结
tarjan 【模板】缩点https://www.luogu.com.cn/problem/P3387 题目描述 给定一个 �n 个点 �m 条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大。你只需要求出这个权值和。 允许多次经过一条边或者…...
Unity类银河恶魔城学习记录7-7 P73 Setting sword type源代码
Alex教程每一P的教程原代码加上我自己的理解初步理解写的注释,可供学习Alex教程的人参考 此代码仅为较上一P有所改变的代码 【Unity教程】从0编程制作类银河恶魔城游戏_哔哩哔哩_bilibili Sword_Skill_Controller.cs using System.Collections; using System.Col…...
安卓版本与鸿蒙不再兼容,鸿蒙开发工程师招疯抢
最近,互联网大厂纷纷开始急招华为鸿蒙开发工程师。这是一个新的信号。在Android和iOS长期霸占市场的今天,鸿蒙的崛起无疑为整个行业带来了巨大的震动。 2023年11月10日,网易更新了高级/资深Android开发工程师岗位,职位要求参与云音…...
《白话C++》第9章 泛型,Page842~844 9.4.2 AutoPtr
源起: C编程中,最容易出的问题之一,就是内存泄露,而new一个对象,却忘了delete它,则是造成内存泄露的主要原因之一 例子一: void foo() {XXXObject* xo new XXXObject;if(!xo->DoSomethin…...
服务流控(Sentinel)
引入依赖 <!-- 必须的 --> <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId> </dependency><!-- sentinel 核心库 --> <dependency><groupId>com.ali…...
点亮代码之灯,程序员的夜与电脑
在科技的海洋里,程序员是那些驾驶着代码船只,穿梭于虚拟世界的探险家。他们手中的键盘是航行的舵,而那台始终不愿关闭的电脑,便是他们眼中永不熄灭的灯塔。有人说,程序员不喜欢关电脑,这究竟是为什么呢&…...
ClickHouse--07--Integration 系列表引擎
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 Integration 系列表引擎1 HDFS1.1 语法1.2 示例: 2 MySQL2.1 语法2.2 示例: 3 Kafka3.1 语法3.2 示例:3.3 数据持久化方法 Integ…...
前端架构: 脚手架框架之yargs的11种基础核心特性的应用教程
脚手架框架之yargs的基础核心特性与应用 1 )概述 yargs 是脚手架当中使用量非常大的一个框架进入它的npm官网: https://www.npmjs.com/package/yargs 目前版本: 17.7.2Weekly Downloads: 71,574,188 (动态数据)最近更新:last month (github)说明这是一个…...
MySQL性能调优篇(6)-主从复制的配置与管理
MySQL数据库主从复制是一种常用的数据复制和高可用性解决方案。它允许将一个MySQL主服务器上的数据自动复制到多个从服务器上,从而提供了数据冗余备份、读写分离等优势。本文将详细介绍MySQL数据库主从复制的配置与管理。 1. 原理概述 MySQL主从复制是基于二进制日…...
Linux第49步_移植ST公司的linux内核第1步_获取linux源码
已知ST公司的linux源码路径: /home/zgq/linux/atk-mp1/stm32mp1-openstlinux-5.4-dunfell-mp1-20-06-24/sources/arm-ostl-linux-gnueabi/linux-stm32mp-5.4.31-r0 1、创建“my_linux”目录 打开第1个终端 输入“ls回车” 输入“cd linux/回车”,切换…...
怎样学习Windows下命令行编写
第一:Windows下命令行指的是cmd和powershell命令行编写 第二:必须要用好help或/?命令,这个命令是最基本的也是最常用的命令列表和语法查看命令 第三:cmd命令使用help查看命令列表或“一串带参数的命令 /?"(不…...
数据结构第十六天(二叉树层序遍历/广度优先搜索(BFS)/队列使用)
目录 前言 概述 接口 源码 测试函数 运行结果 往期精彩内容 前言 从前的日色变得慢,车,马,邮件都慢,一生,只够爱一个人。 概述 二叉树的层序遍历可以使用广度优先搜索(BFS)来实现。具体步骤如下&…...
6.s081 学习实验记录(八)Networking
文章目录 network driver network driver //TODO...
图解贝塞尔曲线生成原理
贝塞尔曲线是一种在计算机图形学中广泛使用的参数曲线,主要用于二维图形应用程序中。它是由法国工程师皮埃尔贝塞尔在1962年提出的,主要用于汽车车身设计。贝塞尔曲线的主要特点是,只要确定了控制点,就可以生成一条平滑的曲线。 …...
租房招聘|在线租房和招聘平台|基于Springboot的在线租房和招聘平台设计与实现(源码+数据库+文档)
在线租房和招聘平台目录 目录 基于Springboot的在线租房和招聘平台设计与实现 一、前言 二、系统功能设计 三、系统实现 1、房屋管理 2、招聘管理 3、平台资讯管理 4、平台资讯类型管理 四、数据库设计 1、实体ER图 六、论文参考 七、最新计算机毕设选题推荐 八、源…...
简单试验:用Excel进行爬虫
文章目录 Excel的版本具体操作实例从网站上爬取工商银行的汇率Excel的版本 office 2016,2019,365这几个版本都可以 具体操作 #mermaid-svg-NlIVMivGoJbdyWW0 {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-NlIVMi…...
SQL 精讲-MySql 常用函数,MySQL语句精讲和举例
FORMAT(数值,保留位数) 四舍五入 SELECT *,FORMAT(score/3,2) from studentROUND(数值,保留位数) 四舍五入 SELECT ROUND(score/3,2) from studentCONCAT(字符串 1,字符串 2) 字符串拼接 SELECT CONCAT(customer_name, (,address,)) from mt_customerLEFT(字符串,长度) 截取…...
大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...
从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序
一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...
多种风格导航菜单 HTML 实现(附源码)
下面我将为您展示 6 种不同风格的导航菜单实现,每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...
聊一聊接口测试的意义有哪些?
目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开,首…...
【JavaWeb】Docker项目部署
引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...
Mac下Android Studio扫描根目录卡死问题记录
环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中,提示一个依赖外部头文件的cpp源文件需要同步,点…...
有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
