英文论文(sci)解读复现【NO.21】一种基于空间坐标的轻量级目标检测器无人机航空图像的自注意
此前出了目标检测算法改进专栏,但是对于应用于什么场景,需要什么改进方法对应与自己的应用场景有效果,并且多少改进点能发什么水平的文章,为解决大家的困惑,此系列文章旨在给大家解读发表高水平学术期刊中的 SCI论文,并对相应的SCI期刊进行介绍,帮助大家解答疑惑,助力科研论文投稿。解读的系列文章,本人会进行 创新点代码复现,有需要的朋友可关注私信我获取。

一、摘要
目标检测是众多无人驾驶最广泛的应用之一飞行器(UAV)任务。由于无人机的拍摄角度和飞行高度,与一般情况下,小物体在航空图像中占很大比例,而普通物体探测器在航空图像中不是非常有效。此外,由于的计算资源无人机平台通常是有限的,普通探测器的部署有大量无人机平台上的参数很难确定。本文提出了一种轻量级的对象检测器YOLOUAVlite用于航空图像。首先,空间注意力模块和坐标注意力模块是修改并组合形成一个新的空间坐标自注意(SCSA)模块,该模块集成空间、位置和通道信息以增强对象表示。关于这个在此基础上,我们构建了一个名为CSAshuffleenet的轻量级主干,它结合了增强型Shuf fle eNet(ES)网络,具有拟议的SCSA模式。关于这个
在此基础上,我们构建了一个名为SCSAshuf fleenet的轻量级主干,它结合了增强型Shuf fle eNet(ES)网络,具有拟议的SCSA模块,以改进特征提取并减少模型大小。其次,我们提出了一种改进的特征金字塔模型,即Slim-BiFPN,其中我们构造了新的轻量级卷积块,以减少特征过程中的信息损失地图融合过程,同时减少模型权重。最后,定位损失函数为改进以提高边界框回归率,同时提高定位精度。在VisDrone-DET2021数据集上进行的大量实验表明,与YOLOv5-N基线,所提出的YOLO UAVlite将参数数量减少了25.8%,并且在mAP0.50中实现了10.9%的增益。与其他轻质探测器相比,mAP和改进了参数的数量。
二、网络模型及核心创新点

三、实验效果(部分展示)

五、实验结论
在这项研究中,提出了一种轻型探测器YOLO UAVlite来应对这一挑战航空图像中的小规模物体检测。网络结构基于在YOLOv5-N算法上,提高了对小物体的检测效果。我们修改空间和坐标的注意力,并结合它们的优势产生新的注意力,称为SCSA,它将空间、位置和通道信息集成到增强对象表示。我们提出了一个基于SACA的骨干网络ES。改进后的主干网大大提高了检测性能,尤其是对
小物体。所提出的Slim BiFPN大大简化了网络,并且SCSA对模块进行了融合,减少了信息丢失,避免了精度损失。最后,我们扩展通过优化损耗来减少小物体的损耗作用。
注:论文原文出自A Lightweight Object Detector Based on Spatial-Coordinate Self-Attention for UAV Aerial Images 本文仅用于学术分享,如有侵权,请联系后台作删文处理。
解读的系列文章,本人已进行创新点代码复现,有需要的朋友欢迎关注私信我获取❤ 。
相关文章:
英文论文(sci)解读复现【NO.21】一种基于空间坐标的轻量级目标检测器无人机航空图像的自注意
此前出了目标检测算法改进专栏,但是对于应用于什么场景,需要什么改进方法对应与自己的应用场景有效果,并且多少改进点能发什么水平的文章,为解决大家的困惑,此系列文章旨在给大家解读发表高水平学术期刊中的 SCI论文&a…...
数据集合
目录 并集 union union all 区别 交集 intersect 差集 minus 错误操作 Oracle从入门到总裁:https://blog.csdn.net/weixin_67859959/article/details/135209645 常用的数学集合有:交集、并集、差集、补集 每一次查询实际上都会返回数据集合,…...
php基础学习之作用域和静态变量
作用域 变量(常量)能够被访问的区域,变量可以在常规代码中定义,也可以在函数内部定义 变量的作用域 在 PHP 中作用域严格来说分为两种,但是 PHP内部还定义一些在严格意义之外的一种,所以总共算三种—— 局部…...
SP1:基于Plonky3构建的zkVM
1. 引言 SP1为SuccictLab开源的,基于Plonky3构建的zkVM。 开源代码见: https://github.com/succinctlabs/sp1(Rust) 当前暂未实现onchain-verifier,但会采用标准的STARK->SNARK verifier。 SP1 zkVM基于的指令…...
Python爬虫之文件存储#5
爬虫专栏:http://t.csdnimg.cn/WfCSx 文件存储形式多种多样,比如可以保存成 TXT 纯文本形式,也可以保存为 JSON 格式、CSV 格式等,本节就来了解一下文本文件的存储方式。 TXT 文本存储 将数据保存到 TXT 文本的操作非常简单&am…...
Spring Boot 笔记 012 创建接口_添加文章分类
1.1.1 实体类添加校验 package com.geji.pojo;import jakarta.validation.constraints.NotEmpty; import lombok.Data;import java.time.LocalDateTime;Data public class Category {private Integer id;//主键IDNotEmptyprivate String categoryName;//分类名称NotEmptypriva…...
Spring-面试题
一、Spring 1、Spring的优势 通过IOC、AOP简化java开发 IOC减低业务对象替换的复杂性,降低耦合AOP允许将一些通用的事务、日志进行集中处理,从而提高更好的复用性Spring生态圈低嵌入式涉及,代码污染小高度开放性,用的人多2、Spring的核心 IOC控制反转: Spring容器为我们创…...
Flink理论—容错之状态
Flink理论—容错之状态 在 Flink 的框架中,进行有状态的计算是 Flink 最重要的特性之一。所谓的状态,其实指的是 Flink 程序的中间计算结果。Flink 支持了不同类型的状态,并且针对状态的持久化还提供了专门的机制和状态管理器。 Flink 使用…...
【数据结构】链表OJ面试题5《链表的深度拷贝》(题库+解析)
1.前言 前五题在这http://t.csdnimg.cn/UeggB 后三题在这http://t.csdnimg.cn/gbohQ 给定一个链表,判断链表中是否有环。http://t.csdnimg.cn/Rcdyc 给定一个链表,返回链表开始入环的第一个结点。 如果链表无环,则返回 NULLhttp://t.cs…...
智慧校园规划建设方案
校园信息化建设呈现智能化、应用多样化发展趋势,多种技术和应用交叉渗透至校园生活的各个方面,全面的智慧校园时代已经到来。 对智慧校园的四大应用领域分析 智慧的教学 信息共享交互:建立信息发布、共享、传播与交互的公共平台 教学流程…...
003 - Hugo, 创建文章
003 - Hugo, 创建文章创建文章单个md文件md文件图片总结 文章内容Front Matter文章目录数学公式的显示KaTeXMathJax 图片 003 - Hugo, 创建文章 创建文章 单个md文件 创建文章的方式: 手动创建:在post目录下,手动创建md文件。命令创建&am…...
HCIA-HarmonyOS设备开发认证V2.0-IOT硬件子系统-GPIO
目录 一、GPIO 概述二、GPIO模块相关API三、实例四、GPIO HDF驱动开发4.1、LED驱动程序(待续...)4.2、LED驱动配置(待续...) 坚持就有收获 轻量系统设备通常需要进行外设控制,例如温湿度数据的采集、灯开关的控制,因此在完成内核开发后,需要进…...
《Java 简易速速上手小册》第7章:Java 网络编程(2024 最新版)
文章目录 7.1 网络基础和 Java 中的网络 - 揭开神秘的面纱7.1.1 基础知识7.1.2 重点案例:实现一个简单的聊天程序7.1.3 拓展案例 1:使用 UDP 进行消息广播7.1.4 拓展案例 2:建立一个简单的 Web 服务器 7.2 创建客户端和服务器 - 构建沟通的桥…...
用keras对电影评论进行情感分析
文章目录 下载IMDb数据读取IMDb数据建立分词器将评论数据转化为数字列表让转换后的数字长度相同加入嵌入层建立多层感知机模型加入平坦层加入隐藏层加入输出层查看模型摘要 训练模型评估模型准确率进行预测查看测试数据预测结果完整函数用RNN模型进行IMDb情感分析用LSTM模型进行…...
每日OJ题_算法_递归④力扣24. 两两交换链表中的节点
目录 ④力扣24. 两两交换链表中的节点 解析代码 ④力扣24. 两两交换链表中的节点 24. 两两交换链表中的节点 难度 中等 给你一个链表,两两交换其中相邻的节点,并返回交换后链表的头节点。你必须在不修改节点内部的值的情况下完成本题(即…...
110 C++ decltype含义,decltype 主要用途
一,decltype 含义和举例 decltype有啥返回啥,auto则不一样,auto可能会舍弃一些东西。 decltype 是 C11提出的说明符。主要作用是:返回操作数的数据类型。 decltype 是用来推导类型,decltype对于一个给定的 变量名或…...
PYTHON 120道题目详解(85-87)
85.Python中如何使用enumerate()函数获取序列的索引和值? enumerate()函数是Python的内置函数,它可以将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在for循环当中。 以下是一个…...
【Linux】Linux编译器-gcc/g++ Linux项目自动化构建工具-make/Makefile
目录 Linux编译器-gcc/g使用 1.背景知识 Linux中头文件的目录在 Linux 库 条件编译的典型应用 2.gcc如何完成 动态库 vs 静态库 debug && release Linux项目自动化构建工具-make/Makefile 背景 用法 特殊符号 Linux编译器-gcc/g使用 1.背景知识 预处理&am…...
sqlserver 子查询 =,in ,any,some,all的用法
在 SQL Server 中,子查询常用于嵌套在主查询中的子句中,以便根据子查询的结果集来过滤主查询的结果,或者作为主查询的一部分来计算结果。 以下是 、IN、ANY、SOME 和 ALL 运算符在子查询中的用法示例: 使用 运算符进行子查询&a…...
基于MapVGL的地理信息三维度数据增长可视化
写在前面 工作中接触,简单整理博文内容为 基于MapVGL的地理信息维度数据增长可视化 Demo理解不足小伙伴帮忙指正 对每个人而言,真正的职责只有一个:找到自我。然后在心中坚守其一生,全心全意,永不停息。所有其它的路都…...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...
QMC5883L的驱动
简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...
华为OD机试-食堂供餐-二分法
import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...
多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
Spring AI Chat Memory 实战指南:Local 与 JDBC 存储集成
一个面向 Java 开发者的 Sring-Ai 示例工程项目,该项目是一个 Spring AI 快速入门的样例工程项目,旨在通过一些小的案例展示 Spring AI 框架的核心功能和使用方法。 项目采用模块化设计,每个模块都专注于特定的功能领域,便于学习和…...
Vue3中的computer和watch
computed的写法 在页面中 <div>{{ calcNumber }}</div>script中 写法1 常用 import { computed, ref } from vue; let price ref(100);const priceAdd () > { //函数方法 price 1price.value ; }//计算属性 let calcNumber computed(() > {return ${p…...
