当前位置: 首页 > news >正文

Leetcode 16-20题

最接近的三数之和

给定整数数组和目标值target,从数组中选出三个整数,使得和与target最接近,并返回三数之和。保证恰好存在一个解。

和上一题类似,我们先对整数数组排序,然后固定i,枚举j,找到满足nums[i]+nums[j]+nums[k]>=target的最小的k

那么显然有nums[i]+nums[j]+nums[k-1]<target,只需要判断两者谁离target最接近即可。

int threeSumClosest(vector<int>& nums, int target) {sort(nums.begin(), nums.end());int delta = INT_MAX, sum = 0;for(int i = 0; i < nums.size() - 2; i ++) {if(i && nums[i] == nums[i - 1]) continue;for(int j = i + 1, k = nums.size() - 1; j < k; j ++) {if(j > i + 1 && nums[j] == nums[j - 1]) continue;while(k - 1 > j && nums[i] + nums[j] + nums[k - 1] >= target)   k --;// 找到固定i和j时满足三数之和大于等于目标值的k,可以保证i,j,k-1三数之和小于目标值int p = nums[i] + nums[j] + nums[k], q = nums[i] + nums[j] + nums[k - 1];if(abs(p - target) < delta) delta = abs(p - target), sum = p;// k-1不能和k相等if(k != j + 1 && abs(q - target) < delta) delta = abs(q - target), sum = q;}}return sum;
}

电话号码的字母组合

数字和字母的映射同电话按键,给定包含数字2-9的字符串,返回能表示的字母组合。

这是一道非常经典的DFS题。每一层只需要枚举这一位填哪个字母,然后到头输出再返回即可。

vector<string> to = {"", "", "abc", "def", "ghi", "jkl", "mno", "pqrs", "tuv", "wxyz"};
vector<string> ans;void dfs(string &digits, int u, string path) {if(path.size() == digits.size()) {      // 若字母串和数字串相同长度则得到答案ans.push_back(path);return ;}for(auto c : to[digits[u] - '0']) {     // 数字为digits[u] - '0'path += c;dfs(digits, u + 1, path);           // 迭代判断第u+1个数字path.pop_back();                    // 恢复现场}
}vector<string> letterCombinations(string digits) {if(!digits.size())  return ans;     // 若空直接返回dfs(digits, 0, "");return ans;
}

四数之和

给定整数数组和目标值,返回四数之和等于目标值且不重复的所有四元组。

数组长度为 [ 1 , 200 ] [1,200] [1,200],数的大小为 [ − 1 0 9 , 1 0 9 ] [-10^9, 10^9] [109,109]

和三数之和一样,只是多了一重循环而已。

但是这里要注意,可能会爆int,判断的时候要开long long

vector<vector<int>> fourSum(vector<int>& nums, int target) {vector<vector<int>> ans;sort(nums.begin(), nums.end());for(int i = 0; i < nums.size(); i ++) {if(i && nums[i] == nums[i - 1]) continue;for(int j = i + 1; j < nums.size(); j ++) {if(j > i + 1 && nums[j] == nums[j - 1]) continue;for(int k = j + 1, l = nums.size() - 1; k < l; k ++) {  // 固定i,j,kif(k > j + 1 && nums[k] == nums[k - 1]) continue;// 强转为long long来判断while(l-1 > k && 0ll + nums[i] + nums[j] + nums[k] + nums[l - 1] >= 1ll * target)  l--;if(0ll + nums[i] + nums[j] + nums[k] + nums[l] == target * 1ll)ans.push_back({nums[i], nums[j], nums[k], nums[l]});}}}return ans;
}

删除链表的倒数第N个结点

删除链表的倒数第 n 个结点,并且返回链表的头结点。

先扫描一边链表得到链表长度,然后再正着删除这个节点即可。可以使用虚拟头节点来取消对头节点的特判。

删除第k个节点的方法就是将第k-1个节点的next指针指向第k+1个节点。

ListNode* removeNthFromEnd(ListNode* head, int n) {ListNode* damn = new ListNode(-1, head);    // 虚拟头节点int len = 0;for(auto p = head; p; p = p->next)  len ++; // 原链表的长度// 1 2 3 4 5// len=5,倒数第2个是从实际头节点开始的正数第4个(len-n+1)// 倒数第n个节点就是从虚拟头节点开始正数第len - n + 2个节点// 那么从虚拟头节点要往后走len-n次才能到实际要删的节点的前面一个节点auto p = damn;for(int i = 1; i <= len - n; i ++)  p = p->next;// 要删第k个节点,就将第k-1个节点的next指针指向第k+1个节点p->next = p->next->next;return damn->next;
}

有效的括号

给定只包含()[]{}的字符串,判断是否有效。

有效的标准是左右括号必须相邻且匹配。

一道经典的栈题。遇到左括号则入栈,遇到右括号则判断栈顶的左括号和当前右括号是否匹配。

最后判断栈是否为空,若栈不为空则不匹配。

左括号(的ASCII为40, 右括号)的ASCII码为41。

左括号[的ASCII为91, 右括号]的ASCII码为93。

左括号{的ASCII为123, 右括号}的ASCII码为125。

所以只要左括号和右括号的ASCII码的差的绝对值小于等于2,则可以判断匹配。

bool isValid(string s) {stack<char> st;for(auto c : s) {if(c == '(' || c == '[' || c == '{')    st.push(c);else {// 一定要加abs来判断距离,否则会导致91-123=-32的情况出现if(st.size() && abs(c - st.top()) <= 2)  st.pop();else    return false;}}return st.empty();
}

相关文章:

Leetcode 16-20题

最接近的三数之和 给定整数数组和目标值target&#xff0c;从数组中选出三个整数&#xff0c;使得和与target最接近&#xff0c;并返回三数之和。保证恰好存在一个解。 和上一题类似&#xff0c;我们先对整数数组排序&#xff0c;然后固定i&#xff0c;枚举j&#xff0c;找到满…...

【开源训练数据集1】神经语言程式(NLP)项目的15 个开源训练数据集

一个聊天机器人需要大量的训练数据,以便在无需人工干预的情况下快速解决用户的询问。然而,聊天机器人开发的主要瓶颈是获取现实的、面向任务的对话数据来训练这些基于机器学习的系统。 我们整理了训练聊天机器人所需的对话数据集,包括问答数据、客户支持数据、对话数据和多…...

【AIGC】Stable Diffusion的ControlNet参数入门

Stable Diffusion 中的 ControlNet 是一种用于控制图像生成过程的技术&#xff0c;它可以指导模型生成特定风格、内容或属性的图像。下面是关于 ControlNet 的界面参数的详细解释&#xff1a; 低显存模式 是一种在深度学习任务中用于处理显存受限设备的技术。在这种模式下&am…...

静态curl库编译与使用(c++)

静态curl库编译与使用 静态curl库编译与使用&#xff1a;mingw https://curl.se/windows/ // 测试&#xff1a;设置URL地址 // curl_easy_setopt(curlHandle, CURLOPT_URL, “https://ipinfo.io/json”); // curl_easy_setopt(curlHandle, CURLOPT_SSL_VERIFYPEER, 0L); // c…...

element 表单提交图片(表单上传图片)

文章目录 使用场景页面效果前端代码 使用场景 vue2 element 表单提交图片   1.点击【上传图片】按钮择本地图片&#xff08;只能选择一张图片&#xff09;后。   2.点击图片&#xff0c;支持放大查看。   3.点击【保存】按钮&#xff0c;提交表单。 页面效果 前端代码…...

Android 15 第一个开发者预览版

点击查看&#xff1a;first-developer-preview-android15 点击查看&#xff1a;Get Android 15 2024年2月16日,谷歌发布 Android 15 第一个开发者预览版 翻译 由工程副总裁戴夫伯克发布 今天&#xff0c;我们发布了Android 15的首个开发者预览版&#xff0c;这样我们的开发者就…...

anomalib1.0学习纪实-续1:增加新算法

0、基本信息 现在我要增加一个新算法&#xff1a;DDAD 他的代码&#xff0c;可以在github中找到&#xff1a;GitHub - arimousa/DDAD 一、基础操作&#xff1a; 1、修改anomalib\src\anomalib\models\__init__.py 我增加的第33行和61行&#xff0c; 2、 增加ddad文件夹和文…...

Java+Vue+MySQL,国产动漫网站全栈升级

✍✍计算机编程指导师 ⭐⭐个人介绍&#xff1a;自己非常喜欢研究技术问题&#xff01;专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目&#xff1a;有源码或者技术上的问题欢迎在评论区一起讨论交流&#xff01; ⚡⚡ Java实战 |…...

机器人常用传感器分类及一般性要求

机器人传感器的分类 传感技术是先进机器人的三大要素&#xff08;感知、决策和动作&#xff09;之一。根据用途不同&#xff0c;机器人传感器可以分为两大类&#xff1a;用于检测机器人自身状态的内部传感器和用于检测机器人相关环境参数的外部传感器。 内部传感器 内部传感…...

C++-opencv的imread、imshow、waitkey、namedWindow

在C中使用OpenCV时&#xff0c;imread和imshow是两个非常基础且常用的函数&#xff0c;用于读取图像和显示图像。以下是这两个函数的简要说明和如何一起使用它们的示例。 imread函数 imread用于从指定的文件路径读取图像。它将图像读入为cv::Mat对象&#xff0c;这是OpenCV中…...

开源语音识别faster-whisper部署教程

1. 资源下载 源码地址 模型下载地址&#xff1a; large-v3模型&#xff1a;https://huggingface.co/Systran/faster-whisper-large-v3/tree/main large-v2模型&#xff1a;https://huggingface.co/guillaumekln/faster-whisper-large-v2/tree/main large-v2模型&#xff1a;…...

使用IntelliJ IDEA配置Maven (入门)

在使用IntelliJ IDEA进行Java开发时&#xff0c;配置Maven是至关重要的一步&#xff0c;因为它可以帮助你管理项目的依赖和构建过程。以下是我在使用IntelliJ IDEA配置Maven的实践过程&#xff0c;以及一些技术笔记和职场感悟。 工作实践与项目复盘 下载Maven&#xff1a; 访问…...

汽车金融市场研究:预计2029年将达到482亿美元

汽车金融公司作为汽车流通产业链的重要一环&#xff0c;认真贯彻落实国家有关政策&#xff0c;采取多种措施助力汽车产业发展&#xff0c;为促进推动汽车消费、助力畅通汽车产业链、支持稳定宏观经济大盘发挥了积极作用。 益于国内疫情得到有效控制&#xff0c;我国经济持续稳定…...

关于举办第十五届蓝桥杯大赛电子赛5G全网规划与建设赛项的通知

关于举办第十五届蓝桥杯大赛电子赛 5G全网规划与建设赛项的通知 各相关院校&#xff1a; 第十五届蓝桥杯大赛通知已于2023年9月27日在蓝桥杯大赛官网发布&#xff0c;现就电子赛5G全网规划与建设赛项报名事宜&#xff0c;公布如下&#xff1a; 一、赛项概述 5G全网规划与建设…...

Vue3快速上手(七) ref和reactive对比

一、ref和reactive对比 表格形式更加直观吧&#xff1a; 项目refreactive是否支持基本类型支持不支持是否支持对象类型支持支持对象类型是否支持属性直接赋值不支持&#xff0c;需要.value支持是否支持直接重新分配对象支持&#xff0c;因为操作的.value不支持&#xff0c;需…...

8、内网安全-横向移动RDPKerberos攻击SPN扫描WinRMWinRS

用途&#xff1a;个人学习笔记&#xff0c;有所借鉴&#xff0c;欢迎指正 目录 一、域横向移动-RDP-明文&NTLM 1.探针服务&#xff1a; 2.探针连接&#xff1a; 3.连接执行&#xff1a; 二、域横向移动-WinRM&WinRS-明文&NTLM 1.探针可用&#xff1a; 2.连接…...

《数据结构与算法之美》读书笔记

《数据结构与算法之美》读书笔记 写在前面 这本书的大部分内容比较浅显&#xff0c;因此只挑DSAA课程上没有涉及或没有深入讨论的点总结 第二章 数组相关 提高传统数组插入/删除数据效率的方法&#xff1a; 如果插入的数据不要求有序&#xff0c;可以直接把某位的原数据替换…...

C语言—字符数组(3)

可能不是那么的完整&#xff0c;先凑合看吧&#xff0c;如果我学会如何修改以后&#xff0c;我慢慢回来修改的 1.编写程序实现对两个字符串的连接功能&#xff1b; 法一:不使用strcat函数,写程序直接实现&#xff0c;记得添加结束符&#xff0c;不然程序访问数组时候将变得不…...

linux 实用技能

1.查看系统版本 cat /etc/redhat-release cat /etc/redhat-release 2. 查看磁盘实用情况 df du 3.查看内存 top -Hp 2214 4. 网络配置 vi /etc/hostname vi /etc/hosts vi /etc/sysconfig/network-scripts/ifcfgens33 6. sed ‘s/a/b/g’ aaa.txt 替换 7. scp …...

【maya 入门笔记】基本视图和拓扑

1. 界面布局 先看基本窗口布局&#xff0c;基本窗口情况如下&#xff1a; 就基本窗口布局的情况来看&#xff0c;某种意义上跟blender更像一点&#xff08;与3ds max相比&#xff09;。 那么有朋友就说了&#xff0c;玛格基&#xff0c;那blender最下面的时间轴哪里去了&…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框&#xff0c;很难让人不联想到SQL注入&#xff0c;但提示都说了不是SQL注入&#xff0c;所以就不往这方面想了 ​ 先查看一下网页源码&#xff0c;发现一段JavaScript代码&#xff0c;有一个关键类ctfs…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

C++使用 new 来创建动态数组

问题&#xff1a; 不能使用变量定义数组大小 原因&#xff1a; 这是因为数组在内存中是连续存储的&#xff0c;编译器需要在编译阶段就确定数组的大小&#xff0c;以便正确地分配内存空间。如果允许使用变量来定义数组的大小&#xff0c;那么编译器就无法在编译时确定数组的大…...

PHP 8.5 即将发布:管道操作符、强力调试

前不久&#xff0c;PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5&#xff01;作为 PHP 语言的又一次重要迭代&#xff0c;PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是&#xff0c;借助强大的本地开发环境 ServBay&am…...

tauri项目,如何在rust端读取电脑环境变量

如果想在前端通过调用来获取环境变量的值&#xff0c;可以通过标准的依赖&#xff1a; std::env::var(name).ok() 想在前端通过调用来获取&#xff0c;可以写一个command函数&#xff1a; #[tauri::command] pub fn get_env_var(name: String) -> Result<String, Stri…...

多元隐函数 偏导公式

我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式&#xff0c;给定一个隐函数关系&#xff1a; F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 &#x1f9e0; 目标&#xff1a; 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z​、 …...

算法刷题-回溯

今天给大家分享的还是一道关于dfs回溯的问题&#xff0c;对于这类问题大家还是要多刷和总结&#xff0c;总体难度还是偏大。 对于回溯问题有几个关键点&#xff1a; 1.首先对于这类回溯可以节点可以随机选择的问题&#xff0c;要做mian函数中循环调用dfs&#xff08;i&#x…...