当前位置: 首页 > news >正文

蓝桥杯DP算法——区间DP(C++)

根据题意要求的是将石子合并的最小权值,我们可以根据DP思想使用二维数组f[i,j]来存放所有从第i堆石子到第j堆石子合并成一堆石子的合并方式。

然后由第二个图所示,我们可以将i到j区间分成两个区间,因为将i到j合并成一个区间的前一步一定是合并前两个区间。因此我们可以将状态计算的递归定义为区间的中间,通过变化区间的中间来寻找合并i到j的最小值。

也就是f[i,j]=min(f[i,k]+f[k+1,j]+s[j]-s[i-1]

例题:https://www.acwing.com/problem/content/284/ 

#include<iostream>
using namespace std;const int N=310;
int n;
int f[N][N];
int s[N];int main()
{cin>>n;int a;for(int i=1;i<=n;i++) //前缀和{scanf("%d",&a);s[i]=s[i-1]+a;}for(int len=2;len<=n;len++){for(int i=1;i+len-1<=n;i++){int l=i ,r=i+len-1;f[l][r]=1e8;for(int k=l;k<r;k++){f[l][r]=min(f[l][r],f[l][k]+f[k+1][r]+s[r]-s[l-1]);}}}cout<<f[1][n];return 0;
}

k的取值范围:

这里划分出的区间是[l, k], [k+1, r]

说明: [l, l] [r, r] 这两个区间都是不为空的,至少包含了一堆石子。

前提:划分出的两个区间都不为空的情况下,讨论k的取值范围

所以,对于[l, k] k可以取到 l 对于[k+1, r] , 因为k+1 <= r, 所以 k <= r - 1, 即 k < r

相关文章:

蓝桥杯DP算法——区间DP(C++)

根据题意要求的是将石子合并的最小权值&#xff0c;我们可以根据DP思想使用二维数组f[i,j]来存放所有从第i堆石子到第j堆石子合并成一堆石子的合并方式。 然后由第二个图所示&#xff0c;我们可以将i到j区间分成两个区间&#xff0c;因为将i到j合并成一个区间的前一步一定是合…...

pytest结合Allure生成测试报告

文章目录 1.Allure配置安装2.使用基本命令报告美化1.**前置条件**2.**用例步骤****3.标题和描述****4.用例优先级**3.进阶用法allure+parametrize参数化parametrize+idsparametrize+@allure.title()4.动态化参数5.环境信息**方式一****方式二**6.用例失败截图1.Allure配置安装 …...

Linux--ACL权限管理

一.ACL权限管理简介 ACL&#xff08;Access Control List&#xff0c;访问控制列表&#xff09;是一种文件权限管理机制&#xff0c;它提供了比传统的UGO&#xff08;用户、组、其他&#xff09;权限更灵活的权限设置方式。以下是ACL的一些主要功能&#xff1a; 针对特定用户或…...

Xcode中App图标和APP名称的修改

修改图标 选择Assets文件 ——> 点击Applcon 换App图标 修改名称 点击项目名 ——> General ——> Display Name...

Spring 手动实现Spring底层机制

目录 一、前言 二、Spring底层整体架构 1.准备工作 : 2.架构分析 : &#xff08;重要&#xff09; 3.环境搭建 &#xff1a; 三、手动实现Spring容器结构 1.自定义注解 : 1.1 Component注解 1.2 Scope注解 2.自定义组件 : 3.自定义用于封装Bean信息的BeanDefinition类&a…...

CSV数据导入到ClickHouse数据库

问题描述&#xff1a;手头上有一个数据量较大的CSV文件&#xff0c;希望导入到指定的ClickHouse数据中&#xff0c;ClickHouse部署在服务器中。 解决方案&#xff1a;通常来说&#xff0c;数据量较少的CSV文件可以直接通过DBeaver软件的可视化界面导入数据。 若数据量较大&…...

第十二天-ppt的操作

目录 创建ppt文档 安装 使用 段落的使用 段落添加数据 段落中定义多个段落 自定义段落 ppt插入表表格 PPT插入图片 读取ppt 读取ppt整体对象 ​编辑 获取ppt文本 获取表格内容 创建ppt文档 安装 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple python…...

计算机网络-网络层,运输层,应用层

网络层/网际层 网络层的主要任务包括&#xff1a; 提供逻辑上的端到端通信&#xff1a;网络层负责确定数据的传输路径&#xff0c;使数据能够从源主机传输到目标主机&#xff0c;即实现端到端的通信。数据包的路由和转发&#xff1a;网络层根据目标主机的地址信息&#xff0c…...

Python爬虫学习

1.1搭建爬虫程序开发环境 爬取未来七天天气预报 from bs4 import BeautifulSoup from bs4 import UnicodeDammit import urllib.request url"http://www.weather.com.cn/weather/101120901.shtml" try:headers{"User-Agent":"Mozilla/5.0 (Windows …...

台式电脑黑屏无法开机怎么办 电脑开机黑屏的解决方法

经常有朋友电脑一开机&#xff0c;发现电脑黑屏没法用了。很多人看到黑屏就懵了&#xff0c;以为电脑要报废了&#xff0c;这是什么原因?电脑开机黑屏怎么解决?一般常说的黑屏故障分为两种&#xff0c;显示屏没有任何显示以及显示英文。下面小编要为大家带来的是台式电脑黑屏…...

【Docker】初学者 Docker 基础操作指南:从拉取镜像到运行、停止、删除容器

在现代软件开发和部署中&#xff0c;容器化技术已经成为一种常见的方式&#xff0c;它能够提供一种轻量级、可移植和可扩展的应用程序打包和部署解决方案。Docker 是目前最流行的容器化平台之一&#xff0c;它提供了一整套工具和技术&#xff0c;使得容器的创建、运行和管理变得…...

突破编程_C++_面试(数组(1))

面试题1&#xff1a;详细说明一下数组名是什么&#xff1f; 在 C 中&#xff0c;数组名代表数组首元素的地址。更具体地说&#xff0c;数组名是一个指向数组第一个元素的常量指针。这意味着&#xff0c;当使用数组名时&#xff0c;实际上是在使用指向数组第一个元素的指针。 例…...

基于springboot+vue的靓车汽车销售网站(前后端分离)

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战&#xff0c;欢迎高校老师\讲师\同行交流合作 ​主要内容&#xff1a;毕业设计(Javaweb项目|小程序|Pyt…...

【知识整理】Git Commit Message 规范

一. 概述 前面咱们整理过 Code Review 一文&#xff0c;提到了 Review 的重要性&#xff0c;已经同过gitlab进行CodeReview 的方式&#xff0c;那么本文详细说明一下对CodeReivew非常重要的Git Commit Message 规范。 我们在每次提交代码时&#xff0c;都需要编写 Commit Mes…...

HarmonyOS学习--三方库

文章目录 一、三方库获取二、常用的三方库1. UI库&#xff1a;2. 网络库&#xff1a;3. 动画库&#xff1a; 三、使用开源三方库1. 安装与卸载2. 使用 四、问题解决1. zsh: command not found: ohpm 一、三方库获取 在Gitee网站中获取 搜索OpenHarmony-TPC仓库&#xff0c;在t…...

【服务器数据恢复】FreeNAS+ESXi虚拟机数据恢复案例

服务器数据恢复环境&#xff1a; 一台服务器通过FreeNAS&#xff08;本案例使用的是UFS2文件系统&#xff09;实现iSCSI存储&#xff0c;整个UFS2文件系统作为一个文件挂载到ESXi虚拟化系统&#xff08;安装在另外2台服务器上&#xff09;上。该虚拟化系统一共有5台虚拟机&…...

【GPT-2】论文解读:Language Models are Unsupervised Multitask Learners

文章目录 介绍zero-shot learning 零样本学习 方法数据Input Representation 结果 论文&#xff1a;Language Models are Unsupervised Multitask Learners 作者&#xff1a;Alec Radford, Jeff Wu, Rewon Child, D. Luan, Dario Amodei, I. Sutskever 时间&#xff1a;2019 介…...

基于机器学习、遥感和Penman-Monteith方程的农田蒸散发混合模型研究_刘燕_2022

基于机器学习、遥感和Penman-Monteith方程的农田蒸散发混合模型研究_刘燕_2022 摘要关键词 1 绪论2 数据与方法2.1 数据2.2 机器学习算法2.3 Penman-Monteith方程2.4 Medlyn公式2.5 模型性能评估 3 基于机器学习算法的混合模型估算农田蒸散量的评价与比较4 利用人工神经网络算法…...

博客 cn 站搭建 v3 v3.1

1. 架构设计 v3.1 版本 2. v2.x 存在的痛点 在v2.x版本中&#xff0c;围绕 服务器 遇到了两个主要的问题&#xff1a; 服务器成本高&#xff1a;博客以静态页面为主&#xff0c;理论上可以实现无服务器部署&#xff0c;但是为了防止恶意攻击&#xff0c;不得不使用服务器进…...

2024全国水科技大会暨流域水环境治理与水生态修复论坛(六)

论坛召集人 冯慧娟 中国环境科学研究院流域中心研究员 刘 春 河北科技大学环境与工程学院院长、教授 一、会议背景 为深入贯彻“山水林田湖是一个生命共同体”的重要指示精神&#xff0c;大力实施生态优先绿色发展战略&#xff0c;积极践行人、水、自然和谐共生理念&…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

应用升级/灾备测试时使用guarantee 闪回点迅速回退

1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间&#xff0c; 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点&#xff0c;不需要开启数据库闪回。…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

postgresql|数据库|只读用户的创建和删除(备忘)

CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解&#xff0c;适合用作学习或写简历项目背景说明。 &#x1f9e0; 一、概念简介&#xff1a;Solidity 合约开发 Solidity 是一种专门为 以太坊&#xff08;Ethereum&#xff09;平台编写智能合约的高级编…...

聊一聊接口测试的意义有哪些?

目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开&#xff0c;首…...

LeetCode - 199. 二叉树的右视图

题目 199. 二叉树的右视图 - 力扣&#xff08;LeetCode&#xff09; 思路 右视图是指从树的右侧看&#xff0c;对于每一层&#xff0c;只能看到该层最右边的节点。实现思路是&#xff1a; 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战&#xff0c;克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...