当前位置: 首页 > news >正文

阿里巴巴网站建设建议/seo百度网站排名研究中心关键词首页优化

阿里巴巴网站建设建议,seo百度网站排名研究中心关键词首页优化,软件系统开发的大概步骤,为什么做免费视频网站目录 k8s的三种网络模式 pod内容器之间的通信 同一个node节点中pod之间通信 不同的node节点的pod之间通信 flannel网络插件 flannel的三种工作方式 VxLAN host-GW UDP Flannel udp 模式 Flannel VXLAN 模式 flannel插件的三大模式的总结 calico网络插件 k8s 组网…

目录

k8s的三种网络模式

pod内容器之间的通信

同一个node节点中pod之间通信 

不同的node节点的pod之间通信

flannel网络插件

flannel的三种工作方式

VxLAN

host-GW

UDP

Flannel udp 模式

Flannel VXLAN 模式

flannel插件的三大模式的总结

calico网络插件

k8s 组网方案对比

Calico 主要由三个部分组成

Calico 工作原理

calico 的 IPIP模式

部署 CNI 网络组件

部署 flannel

部署 Calico

 部署 CoreDNS


k8s的三种网络模式

pod内容器之间的通信

在同一个 Pod 内的容器(Pod 内的容器是不会跨宿主机的)共享同一个网络命令空间,相当于它们在同一台机器上一样,可以用 localhost 地址访问彼此的端口。

同一个node节点中pod之间通信 

每个 Pod 都有一个真实的全局 IP 地址,同一个 Node 内的不同 Pod 之间可以直接采用对方 Pod 的 IP 地址进行通信,Pod1 与 Pod2 都是通过 Veth 连接到同一个 docker0 网桥,网段相同,所以它们之间可以直接通信。

不同的node节点的pod之间通信

Pod 地址与 docker0 在同一网段,docker0 网段与宿主机网卡是两个不同的网段,且不同 Node 之间的通信只能通过宿主机的物理网卡进行。
要想实现不同 Node 上 Pod 之间的通信,就必须想办法通过主机的物理网卡 IP 地址进行寻址和通信。因此要满足两个条件:①Pod 的 IP 不能冲突;将 Pod 的 IP 和所在的 Node 的 IP 关联起来,②通过这个关联让不同 Node 上 Pod 之间直接通过内网 IP 地址通信。

因此引入了cni网络插件的核心原因实际上就是为了解决不同node节点上的不同pod之间的通信,即pod跨主机通信

关于k8s的三种类型的网络IP

节点网络:nodeIP---node节点的物理网卡ip,实现node节点之间的通信

Pod网络:PodIP---Pod与Pod之间通过PodIP进行通信

service网络:clusterIP---k8s集群内部,service资源的clusterIP实现对Pod集群的网络代理

 Overlay Network

叠加网络,在二层或者三层基础网络上叠加的一种虚拟网络技术模式,该网络中的主机通过虚拟链路隧道连接起来(类似于VPN)。

VXLAN

将源数据包封装到UDP中,并使用基础网络的IP/MAC作为外层报文头进行封装,然后在以太网上传输,到达目的地后由隧道端点解封装并将数据发送给目标地址。

flannel网络插件

Flannel 的功能是让集群中的不同节点主机创建的 Docker 容器都具有全集群唯一的虚拟 IP 地址。
Flannel 是 Overlay 网络的一种,也是将 TCP 源数据包封装在另一种网络包里面进行路由转发和通信,目前支持 udp、vxlan、 host-GW 3种数据转发方式。

flannel的三种工作方式

VxLAN

而VxLAN有两种工作方式:
VxLAN:  这是原生的VxLAN,即直接封装VxLAN首部,UDP首部,IP,MAC首部这种的。

DirectRouting:这种是混合自适应的方式, 即它会自动判断,若当前是相同二层网络(即:不垮路由器,二层广播可直达),则直接使用Host-GW方式工作,若发现目标是需要跨网段(即:跨路由器)则自动转变为使用VxLAN的方式。

host-GW

这种方式是宿主机内Pod通过虚拟网桥互联,然后将宿主机的物理网卡作为网关,当需要访问其它Node上的Pod时,只需要将报文发给宿主机的物理网卡,由宿主机通过査询本地路由表,来做路由转发,实现跨主机的Pod通信,这种模式带来的问题时,当k8s集群非常大时,会导致宿主机上的路由表变得非常巨大,而且这种方式,要求所有Node必须在后一个二层网络中,否则将无法转发路由,这也很容易理解,因为如果Node之间是跨路由的,那中间的路由器就必须知道Pod网络的存在,它才能实现路由转发,但实际上,宿主机是无法将Pod网络通告给中间的路由器,因此它也就无法转发理由。

UDP

这种方式性能最差的方式,这源于早期fannel刚出现时,Linux内核还不支持VLAN,即没有VxLAN核心模块因此fannel采用了这种方式,来实现隧道封装,其效率可想而知,因此也给很多人一种印象,fannel的性能很差,其实说的是这种工作模式,若flannel工作在host-GW模式下,其效率是非常高的,因为几乎没有网络开销。

Flannel udp 模式

Flannel udp 模式的工作原理

数据从 node01 上 Pod 的源容器中发出后,经由所在主机的 docker0 虚拟网卡转发到 flannel.1 虚拟网卡,flanneld 服务监听在 flannel.1 虚拟网卡的另外一端。
Flannel 通过 Etcd 服务维护了一张节点间的路由表。源主机 node01 的 flanneld 服务将原本的数据内容封装到 UDP 中后根据自己的路由表通过物理网卡投递给目的节点 node02 的 flanneld 服务,数据到达以后被解包,然后直接进入目的节点的 flannel.1 虚拟网卡,之后被转发到目的主机的 docker0 虚拟网卡,最后就像本机容器通信一样由 docker0 转发到目标容器。

Flannel VXLAN 模式

vxlan 是一种overlay(虚拟隧道通信)技术,通过三层网络搭建虚拟的二层网络,跟 udp 模式具体实现不太一样:
(1)udp模式是在用户态实现的,数据会先经过tun网卡,到应用程序,应用程序再做隧道封装,再进一次内核协议栈,而vxlan是在内核当中实现的,只经过一次协议栈,在协议栈内就把vxlan包组装好
(2)udp模式的tun网卡是三层转发,使用tun是在物理网络之上构建三层网络,属于ip in udp,vxlan模式是二层实现, overlay是二层帧,属于mac in udp
(3)vxlan由于采用mac in udp的方式,所以实现起来会涉及mac地址学习,arp广播等二层知识,udp模式主要关注路由

flannel的VLAN模式工作原理
1 )原始数据帧从源主机的 Pod 容器发出到 CNI0 网桥接口,再由 CNI0 转发到 flannel.1
拟接口
2 flannel.1 接口接收到数据帧后田间 VXLAN 头部,并在内核将原始数据帧封装到 UDP
文里
3 )根据 etcd 中维护的路由表查到目标 Pod 所在的 nodeIP ,并在 UDP 报文外封装 nodeIP
部、 mac 头部,再通过物理网卡发送到目标 node 节点
4 UDP 报文通过 8472 端口送达到目标 node 节点的 flannel.1 接口并在内核进行解封装,
再根据本地路由器发送到 CNI0 网桥,再由 CNI0 发送到目标 Pod 容器

关于vlan和vxlan的区别

#vxlan 支持更多的二层网络
vlan 使用 12 bit 表示 vlanlD ,因此最多支持 2 ^12 = 4094 vlan
vxlan 使用的 ID 使用 24 bit ,最多可以支持 224 (2^24 )
# 已有的网络路径利用效率更高
vlan 使用 spanning tree protocol 避免环路,会将一半的网络路径阻塞
vxlan 的数据包封装成 UDP 通过网络层传输,可以使用所有的网络路径
# 防止物理交换机 Mac 表耗尽
van 需要在交换机的 Mac 表中记录 Mac 物理地址
vxlan 采用隧道机制, Mac 物理地址不需记录在交换机

相比VLAN技术,VXLAN技术具有以下的优势 

24 位长度的 VNI 字段值可以支持更多数量的虚拟网络,解决了 VLAN 数目上限为 4094 的局限
性的问题。
VXLAN 技术通过隧道技术在物理的三层网络中虚拟二层网络,处于 VXLAN 网络的终端无法察
觉到 VXLAN 的通信过程,这样也就使得逻辑网络拓扑和物理网络拓扑实现了一定程度的解
耦,网络拓扑的配置对于物理设备的配置的依赖程度有所降低,配置更灵活更方便。
VLAN 技术仅仅解决了二层网络广播域分割的问题,而 VXLAN 技术还具有多租户支持的特
性,通过 VXLAN 分割,各个租户可以独立组网、通信,地址分配方面和多个租户之间地址冲
突的问题也得到了解决。

flannel插件的三大模式的总结

UDP——出现最早,性能最差。基于flanneld应用程序实现原始数据包的封装和解封装

VXLAN——是flannel的默认模式,也是推荐使用模式。(与udp模式比:)性能比udp好,基于内核实现原始数据帧的封装和解封装;(与HOST-GW模式比:)配置简单使用方便。

HOST-GW——性能最好的模式,但是配置复杂,且不能跨网段(通过静态路由实现)

calico网络插件

k8s 组网方案对比

flannel方案
需要在每个节点上把发向容器的数据包进行封装后,再用隧道将封装后的数据包发送到运行着目标Pod的node节点上。目标node节点再负责去掉封装,将去除封装的数据包发送到目标Pod上。数据通信性能则大受影响。

calico方案
Calico不使用隧道或NAT来实现转发,而是把Host当作Internet中的路由器,使用BGP同步路由,并使用iptables来做安全访问策略,完成跨Host转发来。

Calico 主要由三个部分组成

Calico CNI插件:主要负责与kubernetes对接,供kubelet调用使用。
Felix:负责维护宿主机上的路由规则、FIB转发信息库等。
BIRD:负责分发路由规则,类似路由器。
Confd:配置管理组件。

Calico 工作原理

Calico 是通过路由表来维护每个 pod 的通信。Calico 的 CNI 插件会为每个容器设置一个 veth pair 设备, 然后把另一端接入到宿主机网络空间,由于没有网桥,CNI 插件还需要在宿主机上为每个容器的 veth pair 设备配置一条路由规则,用于接收传入的IP包。
有了这样的 veth pair 设备以后,容器发出的IP包就会通过 veth pair 设备到达宿主机,然后宿主机根据路由规则的下一跳地址, 发送给正确的网关,然后到达目标宿主机,再到达目标容器。
这些路由规则都是 Felix 维护配置的,而路由信息则是 Calico BIRD 组件基于 BGP 分发而来。calico 实际上是将集群里所有的节点都当做边界路由器来处理,他们一起组成了一个全互联的网络,彼此之间通过 BGP 交换路由,这些节点我们叫做 BGP Peer。

目前比较常用的时flannel和calico,flannel的功能比较简单,不具备复杂的网络策略配置能力,calico是比较出色的网络管理插件,但具备复杂网络配置能力的同时,往往意味着本身的配置比较复杂,所以相对而言,比较小而简单的集群使用flannel,考虑到日后扩容,未来网络可能需要加入更多设备,配置更多网络策略,则使用calico更好。

calico IPIP模式

calico IPIP模式的工作原理
1 ) 原始数据包从源主机的 Pod 容器发出到 tunl0 接口,再被内核的 IPIP 驱动封装到 node
节点网络的 IP 报文里
2 )根据 felix 维护的路由规则,通过物理网卡发送到目标 node 节点
3 IP 数据包到达目标 node 节点后 tunl0 ,再通过内核的 IPIP 驱动解封装得到原始数据
包,再根据本地路由器通过 veth pair 设备送达到目标 Pod 容器

部署 CNI 网络组件

部署 flannel

在 node01 节点上操作

unzip flannel-v0.21.5.zip
##上传 flannel-v0.21.5.zip 到 /opt/k8s 目录中,并完成解压##导入镜像
docker load -i flannel-cni-plugin.tar 
docker load -i flannel.tar ##查看镜像是否导入成功
docker images

##创建cni网络插件的工作目录
mkdir -p /opt/cni/bin#将flannel-v0.21.5.zip解压后的cni-plugins-linux-amd64-v1.3.0.tgz解压到cni网络插件的工作目录
tar xf cni-plugins-linux-amd64-v1.3.0.tgz -C /opt/cni/bin/
ls /opt/cni/bin/##将2个镜像和cni工作目录传输给node02节点
scp flannel-cni-plugin.tar flannel.tar node02:/opt/k8s/    
scp -r /opt/cni/ node02:/opt/
#将kube-flannel.yml上传到master01 节点
scp kube-flannel.yml master01:/opt/k8s/

在 master01 节点上操作

#上传 kube-flannel.yml 文件到 /opt/k8s 目录中,部署 CNI 网络
cd /opt/k8s
#启动flannel插件
kubectl apply -f kube-flannel.yml 
#进入kube-flannel的网络命名空间
kubectl get pods -n  kube-flannel
#查看node的状态
kubectl get nodes

部署 Calico

在 master01 节点上操作

#上传 calico.yaml 文件到 /opt/k8s 目录中,部署 CNI 网络
cd /opt/k8s
vim calico.yaml
#修改里面定义Pod网络(CALICO_IPV4POOL_CIDR),与前面kube-controller-manager配置文件指定的cluster-cidr网段一样- name: CALICO_IPV4POOL_CIDRvalue: "192.168.0.0/16"kubectl apply -f calico.yamlkubectl get pods -n kube-system
NAME                                       READY   STATUS    RESTARTS   AGE
calico-kube-controllers-659bd7879c-4h8vk   1/1     Running   0          58s
calico-node-nsm6b                          1/1     Running   0          58s
calico-node-tdt8v                          1/1     Running   0          58s#等 Calico Pod 都 Running,节点也会准备就绪
kubectl get nodes

在 node01 节点上操作

cd /opt/
scp kubelet.sh proxy.sh root@192.168.75.30:/opt/
scp -r /opt/cni root@192.168.75.30:/opt/

 在 node02 节点上操作

#启动kubelet服务
cd /opt/
chmod +x kubelet.sh
./kubelet.sh 192.168.75.30

 在 master01 节点上操作

kubectl get csr
NAME                                                   AGE  SIGNERNAME                                    REQUESTOR           CONDITION
node-csr-BbqEh6LvhD4R6YdDUeEPthkb6T_CJDcpVsmdvnh81y0   10s  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Pending
node-csr-duiobEzQ0R93HsULoS9NT9JaQylMmid_nBF3Ei3NtFE   85m  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Approved,Issued#通过 CSR 请求
kubectl certificate approve node-csr-BbqEh6LvhD4R6YdDUeEPthkb6T_CJDcpVsmdvnh81y0kubectl get csr
NAME                                                   AGE  SIGNERNAME                                    REQUESTOR           CONDITION
node-csr-BbqEh6LvhD4R6YdDUeEPthkb6T_CJDcpVsmdvnh81y0   23s  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Approved,Issued
node-csr-duiobEzQ0R93HsULoS9NT9JaQylMmid_nBF3Ei3NtFE   85m  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Approved,Issued#加载 ipvs 模块
for i in $(ls /usr/lib/modules/$(uname -r)/kernel/net/netfilter/ipvs|grep -o "^[^.]*");do echo $i; /sbin/modinfo -F filename $i >/dev/null 2>&1 && /sbin/modprobe $i;done#使用proxy.sh脚本启动proxy服务
cd /opt/
chmod +x proxy.sh
./proxy.sh 192.168.75.30#查看群集中的节点状态
kubectl get nodes

 部署 CoreDNS

在所有 node 节点上操作

#上传 coredns.tar 到 /opt 目录中
cd /opt
docker load -i coredns.tar

 在 master01 节点上操作

#上传 coredns.yaml 文件到 /opt/k8s 目录中,部署 CoreDNS 
cd /opt/k8s
kubectl apply -f coredns.yamlkubectl get pods -n kube-system 

相关文章:

二进制部署k8s集群之cni网络插件

目录 k8s的三种网络模式 pod内容器之间的通信 同一个node节点中pod之间通信 不同的node节点的pod之间通信 flannel网络插件 flannel的三种工作方式 VxLAN host-GW UDP Flannel udp 模式 Flannel VXLAN 模式 flannel插件的三大模式的总结 calico网络插件 k8s 组网…...

二维矩阵子集的最大值

登录—专业IT笔试面试备考平台_牛客网 正好遇到了 对于一维,我们只需要贪一次 int ans -1E9; int suf -1E9; for (int i 0; i < n; i) {if (i && (a[i] - a[i - 1]) % 2 0) {suf 0;}suf std::max(suf, 0) a[i];ans std::max(ans, suf); } ans就是最大值…...

瑞_23种设计模式_装饰者模式

文章目录 1 装饰者模式&#xff08;Decorator Pattern&#xff09;1.1 介绍1.2 概述1.3 装饰者模式的结构 2 案例一2.1 需求2.2 代码实现 3 案例二3.1 需求3.2 代码实现 4 JDK源码解析5 总结5.1 装饰者模式的优缺点5.2 装饰者模式的使用场景5.3 装饰者模式 VS 代理模式 &#x…...

使用Python制作进度条有多少种方法?看这一篇文章就够了!

前言 偶然间刷到一个视频&#xff0c;说到&#xff1a;当程序正在运算时&#xff0c;会有一个较长时间的空白期&#xff0c;谁也不知道程序运行的进度如何&#xff0c;不如给他加个进度条。 于是我今个就搜寻一下&#xff0c;Python版的进度条都可以怎么写&#xff01; 送书…...

SpringBoot-2.7.6基于SLF4J日志门面的日志框架切换

SpringBoot 没有强制性的日志记录依赖项,但 Commons Logging API 除外,它通常由 Spring Framework 的模块提供。 要使用 Logback,您需要将其包含在类路径中。 推荐的方法是您只需要通过启动器,这都取决于 . 对于 Web 应用程序 ,因为它可传递地依赖于日志记录启动器。 如果…...

MongoDB聚合运算符:$binarySize

$binarySize聚合运算符返回给定字符串或二进制数据的字节数。 语法 { $binarySize: <string or binData> }使用 <string or bindData>可以是任何能够被解析为字符串和二进制数据的表达式&#xff1b;如果表达式解析为null&#xff0c;则$binarySize也返回null&a…...

Android的ViewModel

前言 在Compose的学习中&#xff0c;我们在可组合函数中使用rememberSaveable​​​​​​​保存应用数据&#xff0c;但这可能意味着将逻辑保留在可组合函数中或附近。随着应用体量不断变大&#xff0c;您应将数据和逻辑从可组合函数中移出。 而在之前的应用架构学习中&…...

Android 圆环带刻度条进度动画效果实现

效果图 需求是根据传感器做一个重力球效果&#xff0c;先实现了动画后续加上跟传感器联动. 又是摆烂的一天&#xff0c; 尚能呼吸&#xff0c;未来可期啊 View源码 package com.android.circlescalebar.view;import android.content.Context; import android.content.res.Typ…...

94. 二叉树的中序遍历

// 定义一个名为Solution的类&#xff0c;用于解决二叉树的中序遍历问题 class Solution { // 定义一个公共方法&#xff0c;输入是一个二叉树的根节点&#xff0c;返回一个包含中序遍历结果的整数列表 public List<Integer> inorderTraversal(TreeNode root) { // …...

汽车信息安全概述

随着智能网联汽车的迅猛发展&#xff0c;车辆不再是简单的交通工具&#xff0c;而是集数据收集、处理与通信于一体的移动智能终端。然而&#xff0c;这一变革也使得汽车成为黑客攻击的新目标。汽车信息安全问题日益凸显&#xff0c;成为行业关注的焦点。本文将深入探讨汽车信息…...

Linux——基础IO

&#x1f4d8;北尘_&#xff1a;个人主页 &#x1f30e;个人专栏:《Linux操作系统》《经典算法试题 》《C》 《数据结构与算法》 ☀️走在路上&#xff0c;不忘来时的初心 文章目录 一、C语言IO1、写文件2、读文件3、stdin & stdout & stderr 二、系统文件I/O1、写文件…...

数据结构-数组

一,数组基础及注意事项 1,用来储存一组相同的类型的数据. 2,在内存中,分配连续的空姐,数组创建时要指定容量(大小). 3,创建格式: 数据类型 []数组名 int[] arr new int[10] int[] arr2 {1,2,3,4}. 4,索引--访问数组时通过索引进行操作. (注意:一定要理解索引的含义,在数据结…...

【Java程序设计】【C00279】基于Springboot的智慧外贸平台(有论文)

基于Springboot的智慧外贸平台&#xff08;有论文&#xff09; 项目简介项目获取开发环境项目技术运行截图 项目简介 这是一个基于Springboot的智慧外贸平台 本系统分为系统功能模块、管理员功能模块、买家功能模块以及商家功能模块。 系统功能模块&#xff1a;在平台首页可以…...

C#,计算几何,计算机图形学(Computer Graphics)洪水填充算法(Flood Fill Algorithm)与源代码

1 泛洪填充算法(Flood Fill Algorithm) 泛洪填充算法(Flood Fill Algorithm) &#xff0c;又称洪水填充算法&#xff0c;是在很多图形绘制软件中常用的填充算法&#xff0c;最熟悉不过就是 windows 自带画图软件的油漆桶功能。 2 源程序 using System; using System.Collecti…...

C# 实现网页内容保存为图片并生成压缩包

目录 应用场景 实现代码 扩展功能(生成压缩包) 小结 应用场景 我们在一个求职简历打印的项目功能里&#xff0c;需要根据一定的查询条件&#xff0c;得到结果并批量导出指定格式的文件。导出的格式可能有多种&#xff0c;比如WORD格式、EXCEL格式、PDF格式等&#xff0c;…...

C#_事件简述

事件模型简述 C#中事件的运行模式为"发布订阅模型"&#xff0c;事件触发者称为"发布者"&#xff0c;事件处理者称为"订阅者" 事件模型的五个组成部分 事件&#xff08;成员&#xff09;事件的拥有者&#xff08;类/对象&#xff09;事件的响应…...

C语言:指针(一)

目录 1.内存和地址2. 指针变量和地址2.1 取地址操作符&#xff08;&&#xff09;2.2 指针变量和解引用操作符&#xff08;*&#xff09;2.2.1 指针变量2.2.2 解引用操作符&#xff08;*&#xff09; 2.3 指针变量的大小 3.指针变量的类型和意义3.1 指针的解引用3.2 指针 -指…...

【leetcode刷题之路】面试经典150题(3)——哈希表+区间

文章目录 5 哈希表5.1 【哈希表】赎金信5.2 【数学】同构字符串5.3 【数学】单词规律5.4 【哈希表】有效的字母异位词5.5 【哈希表】字母异位词分组5.6 【双指针】两数之和5.7 【数学】快乐数5.8 【哈希表】219. 存在重复元素 II5.9 【数学】最长连续序列 6 区间6.1 【数学】汇…...

群晖NAS DSM7.2.1安装宝塔之后无法登陆账号密码问题解决

宝塔的安装就不在这赘述了&#xff0c;只说下&#xff0c;启动之后默认账号密码无法登陆的问题。 按照上面给出的账号密码&#xff0c;无法登陆 然后点忘记密码&#xff0c;由于是docker安装的&#xff0c;根目录下没有/www/server/panel 。 也没有bt命令 要怎么修改呢。 既然…...

9、使用 ChatGPT 的 GPT 制作自己的 GPT!

使用 ChatGPT 的 GPT 制作自己的 GPT! 想用自己的 GPT 超越 GPT ChatGPT 吗?那么让我们 GPT GPT 吧! 山姆 奥特曼利用这个机会在推特上宣传 GPTs 的同时还猛烈抨击了埃隆的格罗克。 GPTs概览 他们来了! 在上周刚刚宣布之后,OpenAI 现在推出了其雄心勃勃的新 ChatGPT…...

企业微信应用开发:使用Cpolar域名配置进行本地接口回调的调试指南

文章目录 1. Windows安装Cpolar2. 创建Cpolar域名3. 创建企业微信应用4. 定义回调本地接口5. 回调和可信域名接口校验6. 设置固定Cpolar域名7. 使用固定域名校验 企业微信开发者在应用的开发测试阶段&#xff0c;应用服务通常是部署在开发环境&#xff0c;在有数据回调的开发场…...

js 可选链运算符(?.)空值合并运算符(??)逻辑空赋值运算符(??=)

可选链运算符&#xff08;?.&#xff09;允许读取位于连接对象链深处的属性的值&#xff0c;而不必明确验证链中的每个引用是否有效。?. 运算符的功能类似于 . 链式运算符&#xff0c;不同之处在于&#xff0c;在引用为空 (nullish ) (null 或者 undefined) 的情况下不会引起…...

vue 手势解锁功能

效果 实现 <script setup lang"ts"> const canvasRef ref<HTMLCanvasElement>() const ctx ref<CanvasRenderingContext2D | null>(null) const width px2px(600) const height px2px(700) const radius ref(px2px(50))const init () > …...

介绍 CI / CD

目录 一、介绍 CI / CD 1、为什么要 CI / CD 方法简介 1、持续集成 2、持续交付 3、持续部署 2、GitLab CI / CD简介 3、GitLab CI / CD 的工作原理 4、基本CI / CD工作流程 5、首次设置 GitLab CI / CD 6、GitLab CI / CD功能集 一、介绍 CI / CD 在本文档中&#x…...

Stable Diffusion 3 Early Preview发布

2月22日&#xff0c;Stability AI 发布了 Stable Diffusion 3 early preview&#xff0c;这是一种开放权重的下一代图像合成模型。据报道&#xff0c;它继承了其前身&#xff0c;生成了详细的多主题图像&#xff0c;并提高了文本生成的质量和准确性。这一简短的公告并未附带公开…...

【解决(几乎)任何机器学习问题】:特征选择

当你创建了成千上万个特征后&#xff0c;就该从中挑选出⼏个了。但是&#xff0c;我们绝不应该创建成百上千个⽆⽤的特征。特征过多会带来⼀个众所周知的问题&#xff0c;即 "维度诅咒"。如果你有很多特征&#xff0c;你也必须有很多训练样本来捕捉所有特征。什么是 …...

24 双非计算机秋招总结

引言 我整理了一份 10w 字数的前端技术文档&#xff08;飞书&#xff09;&#xff0c;地址&#xff1a;https://qx8wba2yxsl.feishu.cn/docx/Vb5Zdq7CGoPAsZxMLztc53E1n0k?fromfrom_copylink&#xff0c;欢迎对前端感兴趣的同学查看、共建、分享。 PS&#xff1a;我是一名大四…...

用友NC65与用友NCC对接集成NC65-凭证列表查询打通凭证新增

用友NC65与用友NCC对接集成NC65-凭证列表查询打通凭证新增 数据源平台:用友NC65 用友NC是为集团与行业企业提供的全线管理软件产品&#xff0c;由亚太本土最大的企业管理软件提供商用友公司研发提供&#xff0c;用友NC率先采用J2EE架构和先进开放的集团级开发平台UAP&#xff0…...

【初中生讲机器学习】12. 似然函数和极大似然估计:原理、应用与代码实现

创建时间&#xff1a;2024-02-23 最后编辑时间&#xff1a;2024-02-24 作者&#xff1a;Geeker_LStar 你好呀~这里是 Geeker_LStar 的人工智能学习专栏&#xff0c;很高兴遇见你~ 我是 Geeker_LStar&#xff0c;一名初三学生&#xff0c;热爱计算机和数学&#xff0c;我们一起加…...

【达梦数据库】查看pesg回滚段信息的视图和SQL

一些达梦回滚段是使用情况的查询SQL&#xff0c;供排查“回滚记录版本太旧&#xff0c;无法获取用户记录” 等类似问题时使用 视图名说明主库备库v$pseg_items显示回滚系统中当前回滚项信息&#xff08;回滚线程的工作信息&#xff09;总行数WORKER_THREADS1查询 no rowsv$pseg…...