人脸网格/人脸3D重建 face_mesh(毕业设计+代码)
概述
Face Mesh是一个解决方案,可在移动设备上实时估计468个3D面部地标。它利用机器学习(ML)推断3D面部表面,只需要单个摄像头输入,无需专用深度传感器。利用轻量级模型架构以及整个管道中的GPU加速,该解决方案提供实时性能,对于实时体验至关重要。
此外,该解决方案还捆绑了Face Transform模块,弥合了面部地标估计和实用的实时增强现实(AR)应用之间的差距。它建立了一个度量的3D空间,并使用面部地标屏幕位置来估计该空间内的面部变换。

面部变换数据包括常见的3D基元,包括面部姿势变换矩阵和三角形面网格。在底层采用了一种轻量级的统计分析方法,称为Procrustes分析,以驱动强大、高效和可移植的逻辑。分析在CPU上运行,并在ML模型推断之上具有最小的速度/内存占用。
模型算法
我们的机器学习过程由两个实时深度神经网络模型组成,它们共同工作:一个检测器在完整图像上运行,并计算面部位置;一个3D面部地标模型在这些位置上运行,并通过回归预测近似的3D表面。准确地裁剪面部极大地减少了常见数据增强的需求,如由旋转、平移和缩放变化组成的仿射变换。

相反,它使网络能够将大部分容量专注于坐标预测准确性。此外,在我们的管道中,裁剪也可以基于上一帧中识别的面部地标生成,只有当地标模型无法再识别面部存在时,才会调用面部检测器重新定位面部。这种策略类似于我们的解决方案,它使用手掌检测器和手部地标模型。
该管道实现为使用面部地标模块中的面部地标子图的MediaPipe图,使用专用面部渲染器子图进行渲染。面部地标子图在内部使用来自面部检测模块的面部检测子图。
结论和代码
除了面部地标模型外,我们还提供另一个模型,它将注意力集中在语义上有意义的面部区域上,从而更准确地预测唇部、眼睛和虹膜周围的地标,但需要更多计算资源。它可以实现AR化妆和AR操纵等应用。

# For static images:
#全部代码 -----qq1309399183<---------
IMAGE_FILES = []
drawing_spec = mp_drawing.DrawingSpec(thickness=1, circle_radius=1)
with mp_face_mesh.FaceMesh(static_image_mode=True,max_num_faces=1,refine_landmarks=True,min_detection_confidence=0.5) as face_mesh:for idx, file in enumerate(IMAGE_FILES):image = cv2.imread(file)# Convert the BGR image to RGB before processing.results = face_mesh.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))# Print and draw face mesh landmarks on the image.if not results.multi_face_landmarks:continueannotated_image = image.copy()for face_landmarks in results.multi_face_landmarks:print('face_landmarks:', face_landmarks)mp_drawing.draw_landmarks(image=annotated_image,landmark_list=face_landmarks,connections=mp_face_mesh.FACEMESH_TESSELATION,landmark_drawing_spec=None,connection_drawing_spec=mp_drawing_styles.get_default_face_mesh_tesselation_style())
全部代码私信会回复!
相关文章:
人脸网格/人脸3D重建 face_mesh(毕业设计+代码)
概述 Face Mesh是一个解决方案,可在移动设备上实时估计468个3D面部地标。它利用机器学习(ML)推断3D面部表面,只需要单个摄像头输入,无需专用深度传感器。利用轻量级模型架构以及整个管道中的GPU加速,该解决…...
JMeter 控制并发数
文章目录一、误区二、正确设置 JMeter 的并发数总结没用过 JMeter 的同学,可以先过一遍他的简单使用例子 https://blog.csdn.net/weixin_42132143/article/details/118875293?spm1001.2014.3001.5501 一、误区 在使用 JMeter 做压测时,大家都知道要这么…...
git常用命令汇总
Git 是一种分布式版本控制系统,它具有以下优点: 分布式:每个开发者都可以拥有自己的本地代码仓库,不需要连接到中央服务器,这样可以避免单点故障和网络延迟等问题。 非线性开发:Git 可以支持多个分支并行开…...
【2023】华为OD机试真题Java-题目0226-寻找相似单词
寻找相似单词 题目描述 给定一个可存储若干单词的字典,找出指定单词的所有相似单词,并且按照单词名称从小到大排序输出。单词仅包括字母,但可能大小写并存(大写不一定只出现在首字母)。 相似单词说明:给定一个单词X,如果通过任意交换单词中字母的位置得到不同的单词Y,…...
【项目管理】晋升为领导后,如何开展工作?
兵随将转,作为管理者,你可以不知道下属的短处,却不能不知道下属的长处。晋升为领导后,如何开展工作呢? 金九银十,此期间换工作的人不在少数。有几位朋友最近都换了公司,职位得到晋升,…...
JAVA开发(Spring Gateway 的原理和使用)
在springCloud的架构中,业务服务都是以微服务来划分的,每个服务可能都有自己的地址和端口。如果前端或者说是客户端直接去调用不同的微服务的话,就要配置不同的地址。其实这是一个解耦和去中心化出现的弊端。所以springCloud体系中࿰…...
踩坑:解决npm版本升级报错,无法安装node-sass的问题
npm版本由于经常更新,迁移前端项目时经常发现报错安装不上。 比如,项目经常使用的sass模块,可能迁移的时候就发现安装不了。 因为node-sass 编译器是通过 C 实现的。在 Node.js 中,采用 gyp 构建工具进行构建 C 代码,…...
xFormers安装使用
xFormers是一个模块化和可编程的Transformer建模库,可以加速图像的生成。 这种优化仅适用于nvidia gpus,它加快了图像生成,并降低了vram的使用量,而成本产生了非确定性的结果。 下载地址: https://github.com/faceb…...
React—— hooks(一)
🧁个人主页:个人主页 ✌支持我 :点赞👍收藏🌼关注🧡 文章目录⛳React Hooks💸useState(保存组件状态)🥈useEffect(处理副作用)🔋useCallback(记忆函数&#…...
Ubuntu20.04下noetic版本ros安装时rosdep update失败解决方法【一行命令】
一、问题: 安装完ros后,需要执行sudo rosdep init,但是在没有全局科学上网的前提下,执行sudo rosdep init势必会报错: ERROR: cannot download default sources list from: https://raw.githubusercontent.com/ros/r…...
Vue2.0开发之——购物车案例-Footer组件封装-计算商品的总价格(51)
一 概述 App.vue中计算勾选商品的总价格定义子组件Footer中的商品总价格将App.vue中商品的总价格传递给Footer显示 二 App.vue中计算勾选商品的总价格 2.1 商品总价格的计算逻辑 所有勾选商品的价格*数量 2.2 App.vue中通过计算属性计算总价格 通过计算属性计算总价格 co…...
德鲁特金属导电理论(Drude)
德鲁特模型的重要等式 首先我们建立德鲁特模型的重要等式 我们把原子对于电子的阻碍作用,用一个冲量近似表示出来 在式子 首先定义一个等效加速度 由于 我们可以得到电导率的微观表达式 在交流电环境中 电场的表达式 借鉴上一问的公式 我们可以列出这样的表达式…...
(十一)python网络爬虫(理论+实战)——html解析库:BeautfulSoup详解
系列文章: python网络爬虫专栏 目录 序言 本节学习目标 特别申明...
四轮两驱小车(五):蓝牙HC-08通信
前言: 在我没接触蓝牙之前,我觉得蓝牙模块应用起来应该挺麻烦,后来发觉这个蓝牙模块的应用本质无非就是一个串口 蓝牙模块: 这是我从某宝上买到的蓝牙模块HC-08,价格还算可以,而且可以适用于大多数蓝牙调试…...
华为OD机试题 - 对称美学(JavaScript)| 机考必刷
华为OD机试题 最近更新的博客使用说明本篇题解:对称美学题目输入输出示例一输入输出说明示例二输入输出备注Code解题思路华为OD其它语言版本最近更新的博客 华为od 2023 | 什么是华为od,od 薪资待遇,od机试题清单华为OD机试真题大全,用 Python 解华为机试题 | 机试宝典...
Web Spider案例 网洛克 第四题 JSFuck加密 练习(八)
声明 此次案例只为学习交流使用,抓包内容、敏感网址、数据接口均已做脱敏处理,切勿用于其他非法用途; 文章目录声明一、资源推荐二、逆向目标三、抓包分析 & 下断分析逆向3.1 抓包分析3.2 下断分析逆向拿到混淆JS代码3.3 JSFuck解决方式…...
【JavaScript速成之路】JavaScript数组
📃个人主页:「小杨」的csdn博客 🔥系列专栏:【JavaScript速成之路】 🐳希望大家多多支持🥰一起进步呀! 文章目录前言1,初识数组1.1,数组1.2,创建数组1.3&…...
路由传参含对象数据刷新页面数据丢失
目录 一、问题描述 二、 解决办法 一、问题描述 【1】众所周知,在veu项目开发过程中,我们常常会用到通过路由的方式在页面中传递数据。但是用到this.$route.query.ObjectData的页面,刷新后会导致this.$route.query.ObjectData数据丢失。 …...
大数据flink框架入门分享(起源与发展、实时与离线计算、场景、处理流程、相关概念、特性普及、入门Demo)
文章目录起源与发展flink在github上的现状实时计算VS离线计算实时计算离线计算实时计算常用的场景框架流处理流程flink电商场景下的业务图示例flink中一些重要特性有界数据和无界数据时间语义、水位线事件时间处理时间水位线flink窗口概念理想中的数据处理含有延迟数据的数据处…...
由点到面贯穿整个Java泛型理解
泛型概述 Java泛型(generics)是DK5中引入的一个新特性,泛型提供了编译时类型安全监测机制,该机制允许我们在编译时检测到非法的类型数据结构。 泛型的本质就是参数化类型,也就是所操作的数据类型被指定为一个参数。 如我们经常使用的Array…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...
Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)
目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...
[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?
论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...
深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...
Python 实现 Web 静态服务器(HTTP 协议)
目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1)下载安装包2)配置环境变量3)安装镜像4)node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1)使用 http-server2)详解 …...
人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型
在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重,适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解,并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...
