C#八皇后算法:回溯法 vs 列优先法 vs 行优先法 vs 对角线优先法
目录
1.八皇后算法(Eight Queens Puzzle)
2.常见的八皇后算法解决方案
(1)列优先法(Column-First Method):
(2)行优先法(Row-First Method):
(3)对角线优先法(Diagonal-First Method):
(4)回溯法(Backtracking):
1.八皇后算法(Eight Queens Puzzle)
皇后问题是一个古老而著名的问题,它实质上就是使棋盘上的8个皇后不能在同一行、同一列或同一条斜线上,共有92种方案。
2.常见的八皇后算法解决方案
八皇后算法的解决方案有多种,以下是一些常见的解决方案:
(1)列优先法(Column-First Method):
八皇后问题是一个经典的回溯算法问题,可以使用列优先法(或称为逐列解决法)来解决。 首先选择一个空的棋盘,然后从第一行开始,尝试将皇后放置在每一列。如果当前列没有被攻击,那么就将皇后放置在该列。否则,尝试下一列。当找到一个有效的列时,将皇后放置在该列的最下方。重复这个过程,直到所有的皇后都被放置在棋盘上。
// 使用列优先法解决八皇后问题
// 列优先算法也叫逐列解决法namespace _144_4
{class Program{private const int Size = 8;private readonly int[] queens = new int[Size]; // 存储每行皇后的列位置private readonly bool[] columns = new bool[Size]; // 列是否已被占用private readonly bool[] diagonals1 = new bool[2 * Size - 1]; // 主对角线是否已被占用private readonly bool[] diagonals2 = new bool[2 * Size - 1]; // 副对角线是否已被占用public void Solve(){PlaceQueen(0);}int solnum = 0;private void PlaceQueen(int row){if (row == Size){solnum += 1;PrintQueens(solnum); // 所有皇后都已放置,打印结果return;}for (int col = 0; col < Size; col++){if (IsSafe(row, col)){queens[row] = col;columns[col] = true;diagonals1[row - col + Size - 1] = true;diagonals2[row + col] = true;PlaceQueen(row + 1);// 回溯diagonals2[row + col] = false;diagonals1[row - col + Size - 1] = false;columns[col] = false;}}}private bool IsSafe(int row, int col){return !columns[col] && !diagonals1[row - col + Size - 1] && !diagonals2[row + col];}private void PrintQueens(int solnum){Console.WriteLine("Solution{0}: ", solnum);for (int i = 0; i < Size; i++){for (int j = 0; j < Size; j++){if (queens[i] == j){Console.Write("Q ");}else{Console.Write("* ");}}Console.WriteLine();}Console.WriteLine();}public static void Main(string[] args){ArgumentNullException.ThrowIfNull(args);Program solver = new();solver.Solve();}}
}
- 算法流程
初始化所有数组。
从第一行开始,尝试在每一列放置皇后。
使用回溯法,如果在某一行找不到安全的位置,则返回到上一行并尝试下一个位置。
当所有皇后都成功放置时,打印解决方案。
- 方法分析
Solve():启动算法,从第一行开始放置皇后。
PlaceQueen(int row):递归方法,尝试在当前行的每一列放置皇后。如果找到一个安全的位置,则递归地尝试放置下一个皇后。如果所有皇后都已成功放置,则打印解决方案。
IsSafe(int row, int col):检查在给定位置 (row, col) 放置皇后是否安全。如果列、主对角线和副对角线都没有被占用,则返回 true。
PrintQueens(int solnum):打印解决方案。对于每一行,如果当前列有皇后,则打印 "Q",否则打印 "*"。
(2)行优先法(Row-First Method):
与列优先法类似,但不同之处在于,该方法从第一列开始,尝试将皇后放置在每一行。如果当前行没有被攻击,那么就将皇后放置在该行的最右侧。否则,尝试下一行。当找到一个有效的行时,将皇后放置在该行的当前列。重复这个过程,直到所有的皇后都被放置在棋盘上。
// 使用行优先法解决八皇后问题
// 行优先算法也叫回溯法
namespace _144_3
{class Program{static void Main(string[] args){ArgumentNullException.ThrowIfNull(args);List<int[]> solutions = [];int[] solution = new int[8];Solve(0, solution, solutions);foreach (int[] sol in solutions){for (int i = 0; i < 8; i++){for (int j = 0; j < 8; j++){if (j == sol[i]){Console.Write("Q ");}else{Console.Write(". ");}}Console.WriteLine();}Console.WriteLine();}}static void Solve(int row, int[] solution, List<int[]> solutions){if (row == solution.Length){//solutions.Add(solution.ToArray()); // Add a copy of the solutionsolutions.Add([.. solution]);return;}for (int col = 0; col < solution.Length; col++){if (IsSafe(row, col, solution)){solution[row] = col;Solve(row + 1, solution, solutions);}}}static bool IsSafe(int row, int col, int[] solution){for (int i = 0; i < row; i++){if (solution[i] == col ||Math.Abs(solution[i] - col) == Math.Abs(i - row)){return false;}}return true;}}
}
代码使用了行优先法(也称为回溯法)来解决八皇后问题,这是一个经典的递归回溯问题。 代码分析:
- Main 方法
Main 方法是程序的入口点。
它首先检查 args 是否为空,如果为空则抛出异常。
初始化一个空列表 solutions 来存储所有解决方案。
调用 Solve 方法来寻找解决方案。
遍历 solutions 列表,并打印出每一个解决方案。
- Solve 方法
Solve 方法是递归函数,用于寻找八皇后问题的解决方案。
如果当前行 row 等于解决方案数组的长度(即8),则找到一个解决方案,并将其添加到 solutions 列表中。
对于当前行的每一列,检查是否安全(没有冲突),如果安全则在该列放置皇后,并递归调用 Solve 方法处理下一行。
- IsSafe 方法
IsSafe 方法用于检查在当前位置 (row, col) 放置皇后是否安全。
它遍历已经放置皇后的行,检查当前列和左上方对角线是否有冲突。
如果没有冲突,返回 true;否则返回 false。
- 注意事项
在 Main 方法中,使用了 ArgumentNullException.ThrowIfNull(args); 来检查 args 是否为空。这通常用于命令行应用程序,但在没有实际命令行参数需求的程序中是不必要的。
在 Solve 方法中,使用了 solutions.Add([.. solution]); 来添加解决方案的副本到 solutions 列表。这是C# 9.0引入的切片语法,用于创建数组或列表的浅拷贝。用这个简洁的方式来避免直接添加引用到同一个数组。
(3)对角线优先法(Diagonal-First Method):
该方法首先选择一个空的棋盘,然后从左上角开始,尝试将皇后放置在对角线上。如果当前对角线没有被攻击,那么就将皇后放置在该对角线的最下方。否则,尝试下一个对角线。当找到一个有效的对角线时,将皇后放置在该对角线的当前列。重复这个过程,直到所有的皇后都被放置在棋盘上。
// 八皇后算法_对角线优先法
namespace _144_2
{class Program{static void Main(string[] args){ArgumentNullException.ThrowIfNull(args);int n = 8;int[] queens = new int[n];List<int[]> solutions = [];SolveQueens(n, queens, 0, solutions);Console.WriteLine("Total solutions: " + solutions.Count);foreach (int[] solution in solutions){for (int i = 0; i < n; i++){for (int j = 0; j < n; j++){if (j == solution[i]){Console.Write("Q ");}else{Console.Write(". ");}}Console.WriteLine();}Console.WriteLine();}}static void SolveQueens(int n, int[] queens, int index, List<int[]> solutions){if (index == n){solutions.Add([.. queens]);return;}for (int i = 0; i < n; i++){if (CanPlaceQueen(queens, index, i)){queens[index] = i;SolveQueens(n, queens, index + 1, solutions);}}}static bool CanPlaceQueen(int[] queens, int index, int col){for (int i = 0; i < index; i++){if (queens[i] == col || Math.Abs(queens[i] - col) == index - i){return false;}}return true;}}
}
在这个示例中,使用一个整数数组queens来表示棋盘上皇后的位置。queens数组的每个元素表示对应行上皇后的列位置。
使用递归函数SolveQueens来解决八皇后问题。该函数接受当前皇后的位置、当前行号和已找到的解作为参数。在递归过程中,尝试在每一列上放置皇后,并检查是否满足问题的约束条件。如果满足,则将皇后放置在当前行的对应列上,并继续递归处理下一行。如果当前行的所有列都满足约束条件,则表示找到一个解,并将解添加到已找到的解列表中。
函数CanPlaceQueen用于检查在给定位置放置皇后是否满足约束条件。它接受棋盘大小、当前皇后的位置、当前行号和当前列号作为参数。在函数中,遍历当前行号之前的行,检查当前列号是否已经放置了皇后,或者当前行和列上的皇后是否在同一条对角线上。如果满足任一条件,则表示不能在当前位置放置皇后。
在Main函数中,输出找到的解决方案。对于每个解决方案,遍历8行8列,如果当前列是皇后的位置,则输出"Q",否则输出"."。
(4)回溯法(Backtracking):
该方法通过递归的方式尝试所有可能的皇后位置。算法步骤如下:
- 选择一个空的棋盘。
- 选择一个皇后,将其放置在棋盘的第一行的任意一列。
- 选择下一个皇后,将其放置在下一行的任意一列,但不能与第一个皇后位于同一列或同一对角线上。
- 重复步骤3,直到所有的皇后都被放置在棋盘上。
// 八皇后算法_回溯法
namespace _144
{class Program{#region 八皇后算法/// <summary>/// 解决八皇后问题/// </summary>/// <param name="size">皇后数量</param>static void QueenArithmetic(int size){int[] Queen = new int[size];//每行皇后的位置int y, x, i, j, d, t = 0;y = 0;Queen[0] = -1;while (true){for (x = Queen[y] + 1; x < size; x++){for (i = 0; i < y; i++){j = Queen[i];d = y - i;//检查新皇后是否能与以前的皇后相互攻击if ((j == x) || (j == x - d) || (j == x + d))break;}if (i >= y)break; //不攻击}if (x == size) //没有合适的位置{if (0 == y){Console.WriteLine("Over"); //回溯到了第一行break; //结束}Queen[y] = -1; //回溯y--;}else{Queen[y] = x; //确定皇后的位置y++; //下一个皇后if (y < size)Queen[y] = -1;else{Console.WriteLine("\n" + ++t + ':');//所有的皇后都排完了,输出for (i = 0; i < size; i++){for (j = 0; j < size; j++)Console.Write(Queen[i] == j ? 'Q' : '*');Console.WriteLine();}y = size - 1;//回溯}}}Console.ReadLine();}#endregionstatic void Main(string[] args){ArgumentNullException.ThrowIfNull(args);int size = 8; //皇后数QueenArithmetic(size);}}
}
相关文章:
C#八皇后算法:回溯法 vs 列优先法 vs 行优先法 vs 对角线优先法
目录 1.八皇后算法(Eight Queens Puzzle) 2.常见的八皇后算法解决方案 (1)列优先法(Column-First Method): (2)行优先法(Row-First Method)&a…...
springboot整合swagger,postman,接口规范
一、postman介绍 1.1概述 工具下载 Postman(发送 http 请求的工具) 官网(下载速度比较慢):Download Postman | Get Started for Free 网盘下载:百度网盘 请输入提取码 1.2Http 请求格式 请求地址请求方法状…...
029—pandas 遍历行非向量化修改数据
前言 在 pandas 中,向量化计算是指利用 pandas 对象的内置方法和函数,将操作应用到整个数据结构的每个元素,从而在单个操作中完成大量的计算。 但在一些需求中,我们无法使用向量化计算,就需要迭代操作,本例…...
相机安装位置固定后开始调试设备供电公司推荐使用方法
摄像头安装位置固定后开始调试 设备供电:无电源设备需要连接12V/2A电源并连接到摄像机的DC端口,而有电源的摄像机可以直接连接到220V电源。 连接设备:如果是有线连接,请使用网线将设备连接到电脑(建议直接连接&#…...
AI视频批量混剪系统|罐头鱼AI视频矩阵获客
AI视频批量混剪系统助您轻松管理和编辑视频素材 如今,视频营销已成为企业推广的重要方式。为了满足用户对视频管理、发布和编辑的需求,《罐头鱼AI视频批量混剪系统》应运而生。这款智能化系统集成了多种功能,助您轻松管理和发布精彩视频内容…...
线程池学习-了解,自定义线程池
什么是线程池,这个池字是什么 线程池,主要利用池化思想,线程池,字符串常量池等 为什么要有一个线程池? 正常线程的创建:1,手动创建一个线程 2.给该线程分配任务,线程执行任务 3…...
CentOS7.9 安装SIPp3.6
epel里面的SIPp版本比较旧,先不要epel yum remove -y epel-release okay有很多CentOS软件,可以这样安装: 编辑 /etc/yum.repos.d/okay.repo,内容为: [okay] nameExtra OKay Packages for Enterprise Linux - $basearc…...
Java零基础入门-LinkedHashMap集合
一、本期教学目标 学习LinkedHashMap集合的概念及特点。学习LinkedHashMap存储结构。学习LinkedHashMap集合常用方法及示例代码演示。 二、正文 1、概述 我们学习了map接口之HashMap集合,今天我们要来学习map接口的另一个实现类-LinkedHashMap,不知道…...
LRC转SRT
最近看到一首很好的英文MTV原版,没又字幕,自己找字幕,只找到LRC,ffmpeg不支持LRC,网上在线转了SRT。 Subtitle Converter | Free tool | GoTranscript 然后用 ffmpeg 加字幕 ffmpeg -i LoveMeLikeYouDo.mp4 -vf sub…...
mybatis源码阅读系列(二)
前言 上一篇文章mybatis源码阅读系列(一)介绍了mybatis和原生jdbc的区别,并通过代码展示了两者的运行过程和结果,下面让我们继续详细了解下mybatis的执行过程; package com.wyl.mybatis.service;import com.wyl.mybat…...
【Web开发】CSS教学(超详细,满满的干货)
💓 博客主页:从零开始的-CodeNinja之路 ⏩ 收录文章:【Web开发】CSS教学(超详细,满满的干货) 🎉欢迎大家点赞👍评论📝收藏⭐文章 目录 CSS一. 什么是CSS?1.1 基本语法规范1.2 引入方式1.3 规范 二. CSS选…...
系列学习前端之第 5 章:学习 ES6 ~ ES11
1、什么是 ECMAScript ECMAScript 是由 Ecma 国际通过 ECMA-262 标准化的脚本程序设计语言。 从第 6 版开始,发生了里程碑的改动,并保持着每年迭代一个版本的习惯。 ES62015年,ES72016年,ES82017年,ES92018年&#…...
Linux学习(4)——使用编辑器
1.gedit编辑器 简单易懂,依赖图形界面。可以使用ctrlc ctrlv等快捷键,ctrls进行保存,与windows系统中相类似。 2.vi/vim编辑器 vi/vim可以直接通过控制台的终端完成文本的编辑,不依赖图形界面,使用范围更广。它的编辑…...
简单函数_短信计费
任务描述 用手机发短信,一条短信资费为0.1元,但限定一条短信的内容在70个字以内(包括70个字)。如果你一次所发送的短信超过了70个字,则会按照每70个字一条短信的限制把它分割成多条短信发送。假设已经知道你当月所发送…...
centos命令history设置记录10000行
今天在操作服务器的时候,用history查看操作记录的时候,发现只能查看10条,这样不行啊,我想查看所有人对服务器操作的命令。 [rootbogon ~]# history解决办法: #1、找到/etc/profile文件中的histsize 把10改成10000 […...
SpringBoot打造企业级进销存储系统 第七讲
Transientprivate String roles; // 所拥有的角色package com.java1234.entity;import javax.persistence.Column; import javax.persistence.Entity; import javax.persistence.GeneratedValue; import javax.persistence.Id; import javax.persistence.Table; import javax.p…...
1.实用Qt:解决绘制圆角边框时,圆角锯齿问题
目录 问题描述 解决方案 方案1: 方案2: 结果示意图 问题描述 做UI的时候,我们很多时候需要给绘制一个圆角边框,初识Qt绘制的童鞋,可能绘制出来的圆角边框很是锯齿,而且粗细不均匀,如下图&…...
JavaWeb08-Filter和Listener
目录 一、Filter 1.概述 2.作用 3.快速入门 4.执行流程 5.拦截路径配置 6.拦截器链(多个过滤器) 7.登录验证 二、Listener(了解即可) 1.概述 2.主要作用 3.分类 4.快速入门 一、Filter 1.概述 Filter 表示过滤器&am…...
关于ClickHouse的一些小技巧
关于ClickHouse的一些小技巧 设置变量 set param_nameAlex; select {name:String};projection的使用 基于projection(投影)的优化需要打开开关optimize_use_projections。ClickHouse里的projection是物化的,也就是说数据会复制存一份。 Pr…...
有来团队后台项目-解析7
sass 安装 因为在使用vite 创建项目的时候,已经安装了sass,所以不需要安装。 如果要安装,那么就执行 npm i -D sass 创建文件 src 目录下创建文件 目录结构如图所示: reset.scss *, ::before, ::after {box-sizing: border-…...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...
Matlab | matlab常用命令总结
常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...
JS设计模式(4):观察者模式
JS设计模式(4):观察者模式 一、引入 在开发中,我们经常会遇到这样的场景:一个对象的状态变化需要自动通知其他对象,比如: 电商平台中,商品库存变化时需要通知所有订阅该商品的用户;新闻网站中࿰…...
JavaScript基础-API 和 Web API
在学习JavaScript的过程中,理解API(应用程序接口)和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能,使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...
