临沂做网站需要多少钱/电商网站设计方案
说明:该系列文章从本人知乎账号迁入,主要原因是知乎图片附件过于模糊。
知乎专栏地址:
语音生成专栏
系列文章地址:
【GPT-SOVITS-01】源码梳理
【GPT-SOVITS-02】GPT模块解析
【GPT-SOVITS-03】SOVITS 模块-生成模型解析
【GPT-SOVITS-04】SOVITS 模块-鉴别模型解析
【GPT-SOVITS-05】SOVITS 模块-残差量化解析
【GPT-SOVITS-06】特征工程-HuBert原理
1.概述
在 GPT-SOVITS 实现中,残差量化层是一个相对核心的改动。如前文所述,在 AR模块训练时,其semantic特征是基于预训练生成模型中残差量化层的输出。残差量化层的核心代码如下:
- ResidualVectorQuantizer 是残差量化编码器的封装,在生成模型中构建
- ResidualVectorQuantization 是残差量化编码器的具体实现,其默认包含8个量化编码器
- VectorQuantization。层与层之间用的是输入值和量化值的残差。
- VectorQuantization 是具体某一层的量化编码,将输入数据进行量化编码
- VectorQuantization 在进行量化编码时,其编码字典的实现为
Euclideanbook。其将输入数据做k均值聚类实现一个编码器,将k均值的中心点,作为量化字典。
2、EuclideanCodebook 实现
2.1、原理
- 输入数据大小为【num_sample,dim】,前者为输入数据数量,后者为每个数据的向量维度 基于k均值聚类,codebook_size
- 参数为聚类K的中心点数量,即字典大小,kmeans_iters为迭代次数
- 完成k均值聚类后,原始数据各值与中心点计算欧式距离,以就近原则选择中心点作为量化的替代值
2.2、调试代码参考
book = EuclideanCodebook(dim=30,codebook_size=1024,kmeans_init=True,kmeans_iters=50,decay=0.99,epsilon=1e-5,threshold_ema_dead_code=2)quantize, embed_ind = book.forward(sample_data)
3、ResidualVectorQuantizer 实现
3.1、原理
- 残差量化编码器有默认8个独立的量化器构成
- 在每一层的输出时输出三个值
all_losses = []all_indices = []out_quantized = []n_q = n_q or len(self.layers)for i, layer in enumerate(self.layers[:n_q]):# quantized: 量化后的特征向量# indices: 量化后的特征向量所对应的索引# loss : 量化后的特征向量和原始特征的损失quantized, indices, loss = layer(residual) # 进入下一层的输入是残差residual = residual - quantized # 残差quantized_out = quantized_out + quantized # 基于量化输出的总体累加输出all_indices.append(indices)all_losses.append(loss)if layers and i in layers:out_quantized.append(quantized)out_losses, out_indices = map(torch.stack, (all_losses, all_indices))return quantized_out, out_indices, out_losses, out_quantized
3.2、调试代码参考
rvq = ResidualVectorQuantization(dim=30,codebook_size=1024,num_quantizers=8,decay=0.99,kmeans_init=True,kmeans_iters=50,threshold_ema_dead_code=2)sample_data_1 = torch.rand(1,30, 1000)rvq.forward(sample_data_1, layers=[0])codes = rvq.forward(sample_data_1)indices = rvq.encode(sample_data_1)print(rvq.decode(indices))
相关文章:

【GPT-SOVITS-05】SOVITS 模块-残差量化解析
说明:该系列文章从本人知乎账号迁入,主要原因是知乎图片附件过于模糊。 知乎专栏地址: 语音生成专栏 系列文章地址: 【GPT-SOVITS-01】源码梳理 【GPT-SOVITS-02】GPT模块解析 【GPT-SOVITS-03】SOVITS 模块-生成模型解析 【G…...

Flutter第四弹:Flutter图形渲染性能
目标: 1)Flutter图形渲染性能能够媲美原生? 2)Flutter性能优于React Native? 一、Flutter图形渲染原理 1.1 Flutter图形渲染原理 Flutter直接调用Skia。 Flutter不使用WebView,也不使用操作系统的原生控件,而是…...

[氮化镓]GaN中质子反冲离子的LET和射程特性
这篇文件是一篇关于氮化镓(GaN)中质子反冲离子的线性能量转移(LET)和射程特性的研究论文,发表在《IEEE Transactions on Nuclear Science》2021年5月的期刊上。论文的主要内容包括: 研究背景:氮…...

【项目】C++ 基于多设计模式下的同步异步日志系统
前言 一般而言,业务的服务都是周而复始的运行,当程序出现某些问题时,程序员要能够进行快速的修复,而修复的前提是要能够先定位问题。 因此为了能够更快的定位问题,我们可以在程序运行过程中记录一些日志,通…...

安卓国产百度网盘与国外云盘软件onedrive对比
我更愿意使用国外软件公司的产品,而不是使用国内百度等制作的流氓软件。使用这些国产软件让我不放心,他们占用我的设备大量空间,在我的设备上推送运行各种无用的垃圾功能。瞒着我,做一些我不知道的事情。 百度网盘安装包大小&…...

健身·健康行业Web3新尝试:MATCHI
随着区块链技术进入主流,web3 运动已经开始彻底改变互联网,改写从游戏到金融再到艺术的行业规则。现在,MATCHI的使命是颠覆健身行业。 MATCHI是全球首个基于Web3的在线舞蹈健身游戏和全球首个Web3舞蹈游戏的发起者,注册于新加坡&a…...

VB.NET高级面试题:什么是 VB.NET?与 Visual Basic 6.0 相比有哪些主要区别?
什么是 VB.NET?与 Visual Basic 6.0 相比有哪些主要区别? VB.NET是一种面向对象的编程语言,是微软公司推出的.NET平台上的一种编程语言,用于构建Windows应用程序、Web应用程序和Web服务等。它是Visual Basic的后续版本࿰…...

30.HarmonyOS App(JAVA)鸿蒙系统app多线程任务分发器
HarmonyOS App(JAVA)多线程任务分发器 打印时间,记录到编辑框textfield信息显示 同步分发,异步分发,异步延迟分发,分组任务分发,屏蔽任务分发,多次任务分发 参考代码注释 场景介绍 如果应用的业务逻辑比…...

伺服电机编码器的分辨率指得是什么?
伺服电机编码器的分辨率是伺服电机编码器的重要参数。 一般来说,具体的伺服电机编码器型号可以找到对应的分辨率值。 伺服电机编码器的分辨率和精度不同,但也有一定的关系。 伺服电机编码器的分辨率是多少? 1、伺服编码器(同步伺…...

WPF中使用LiveCharts绘制散点图
一、背景 这里的代码使用MVVM模式进行编写 二、Model public class DataPoint{public double X { get; set; }public double Y { get; set; }} 三、ViewModel public class ScatterChartViewModel{public SeriesCollection Series { get; set; }public ScatterChartViewMod…...

Android Studio实现内容丰富的安卓博客发布平台
获取源码请点击文章末尾QQ名片联系,源码不免费,尊重创作,尊重劳动 项目编号078 1.开发环境android stuido jdk1.8 eclipse mysql tomcat 2.功能介绍 安卓端: 1.注册登录 2.查看博客列表 3.查看博客详情 4.评论博客, 5.…...

【GPT-SOVITS-01】源码梳理
说明:该系列文章从本人知乎账号迁入,主要原因是知乎图片附件过于模糊。 知乎专栏地址: 语音生成专栏 系列文章地址: 【GPT-SOVITS-01】源码梳理 【GPT-SOVITS-02】GPT模块解析 【GPT-SOVITS-03】SOVITS 模块-生成模型解析 【G…...

数据结构大合集02——线性表的相关函数运算算法
函数运算算法合集02 顺序表的结构体顺序表的基本运算的实现1. 建立顺序表2. 顺序表的基本运算2.1 初始化线性表2. 2 销毁顺序表2.3 判断顺序表是否为空表2.4 求顺序表的长度2.5 输出顺序表2.6 按序号求顺序表中的元素2.7 按元素值查找2.8 插入数据元素2.9 删除数据元素 单链表的…...

threejs案例,与静态三角形网格的基本碰撞, 鼠标环顾四周并投球游戏
创建一个时钟对象: const clock new THREE.Clock();这行代码创建了一个新的THREE.Clock对象,它用于跟踪经过的时间。这在动画和物理模拟中很有用。 2. 创建场景: const scene new THREE.Scene();这行代码创建了一个新的3D场景。所有的物体(如模型、灯…...

将FastSAM中的TextPrompt迁移到MobileSAM中
本博文简单介绍了SAM、FastSAM与MobileSAM,主要关注于TextPrompt功能的使用。从性能上看MobileSAM是最实用的,但其没有提供TextPrompt功能,故而参考FastSAM中的实现,在MobileSAM中嵌入TextPrompt类。并将TextPrompt能力嵌入到MobileSAM官方项目提供的gradio.py部署代码中,…...

KY191 矩阵幂(用Java实现)
描述 给定一个n*n的矩阵,求该矩阵的k次幂,即P^k。 输入描述: 第一行:两个整数n(2<n<10)、k(1<k<5),两个数字之间用一个空格隔开,含义如上所示…...

基于Python的股票市场分析:趋势预测与策略制定
一、引言 股票市场作为投资领域的重要组成部分,其价格波动和趋势变化一直是投资者关注的焦点。准确预测股票市场的趋势对于制定有效的投资策略至关重要。本文将使用Python编程语言,结合时间序列分析和机器学习算法,对股票市场的历史数据进行…...

【C++】了解一下编码
个人主页 : zxctscl 如有转载请先通知 文章目录 1. 前言2. ASCII编码3. unicode4. GBK5. 类型转换 1. 前言 看到string里面还有Template instantiations: string其实是basic_string<char>,它还是一个模板。 再看看wstring࿱…...

生成式人工智能在金融领域:FinGPT、BloombergGPT及其未来
生成式人工智能在金融领域的应用:FinGPT、BloombergGPT 及其他 引言 生成式人工智能(Generative AI)是指能够生成与输入数据相似的新数据样本的模型。ChatGPT 的成功为各行各业带来了许多机会,激励企业设计自己的大型语言模型。…...

webpack5零基础入门-10babel的使用
Babel JavaScript 编译器。 主要用于将 ES6 语法编写的代码转换为向后兼容的 JavaScript 语法,以便能够运行在当前和旧版本的浏览器或其他环境中 1.安装相关包 npm install -D babel-loader babel/core babel/preset-env 2.进行相关配置 2.1第一种写法是在webp…...

SAR ADC教程系列5——FFT频谱泄露以及相干采样
频谱泄露的出现以及如何规避? 为什么要相干采样? 1.分析ADC输出信号的频谱工具:DFT(Discrete Fourier Transform) 重点:DFT相邻频谱频率间隔为fs/N 如何规避频谱泄露? 对于DFT,它对于接收到的信…...

算法D48 | 动态规划10 | 121. 买卖股票的最佳时机 122.买卖股票的最佳时机II
股票问题是一个动态规划的系列问题,今日安排的题目不多,大家可以慢慢消化。 121. 买卖股票的最佳时机 视频讲解:https://www.bilibili.com/video/BV1Xe4y1u77q https://programmercarl.com/0121.%E4%B9%B0%E5%8D%96%E8%82%A1%E7%A5%A8%E7%9A…...

Windows10安装RubyRails步骤
2024年3月14日安装,亲测。记录一下以便后续需要查看。 首先在官网下载RubyInstaller for Windows - 国内镜像 rubyinstaller.cn 版本是3.3.0 下载完后图形化界面安装 安装完毕,出现Ruby的命令行,或者在开始菜单出现start command prompt wi…...

Sqlserver 模糊查询中文及在mybatis xml【非中文不匹配查询】N@P2问题
问题 sqlserver模糊查询或相等,两者都无法查询。 百度方案解释 Like 后的N是表示unicode字符。获取SQL Server数据库中Unicode类型的数据时,字符串常量必须以大写字母 N 开头,否则字符串将转换为数据库的默认代码页(字符集编码)࿰…...

旧华硕电脑开机非常慢 电脑开机黑屏很久才显示品牌logo导致整体开机速度非常的慢怎么办
前提条件 电池需要20%(就是电池没有报废)且电脑接好电源,千万别断电,电脑会变成砖头的 解决办法 更新bios即可解决,去对应品牌官网下载最新的bios版本就行了 网上都是一些更新驱动啊...

【go语言开发】性能分析工具pprof使用
本文主要介绍如何在项目中使用pprof工具。首先简要介绍pprof工具的作用;然后介绍pprof的应用场景,主要分为工具型应用和服务型应用。最后数据分析项目,先采集项目信息,再可视化查看 文章目录 前言应用场景工具型应用服务型应用 数…...

ARM_基础之RAS
Reliability, Availability, and Serviceability (RAS), for A-profile architecture 源自 https://developer.arm.com/documentation/102105/latest/ 1 Introduction to RAS 1.1 Faults,Errors,and failures 三个概念的区分: • A failure is the event of devia…...

VScode(1)之内网离线安装开发环境(VirtualBox+ubuntu+VScode)
VScode(1)之内网离线安装开发环境(VirtualBoxubuntuVScode) Author: Once Day Date: 2022年7月18日/2024年3月17日 一位热衷于Linux学习和开发的菜鸟,试图谱写一场冒险之旅,也许终点只是一场白日梦… 漫漫长路,有人对你微笑过嘛… 全系列文…...

Python爬虫与数据可视化源码免费领取
引言 作为一名在软件技术领域深耕多年的专业人士,我不仅在软件开发和项目部署方面积累了丰富的实践经验,更以卓越的技术实力获得了🏅30项软件著作权证书的殊荣。这些成就不仅是对我的技术专长的肯定,也是对我的创新精神和专业承诺…...

Android Studio 打包 Maker MV apk 详细步骤
一.使用RPG Make MV 部署项目,获取项目文件夹 这步基本都不会有问题: 二.安装Android Studio 安装过程参考教材就行了: https://blog.csdn.net/m0_62491877/article/details/126832118 但是有的版本面板没有Android的选项(勾…...