超越标签的探索:K-means与DBSCAN在数据分析中的新视角
最近在苦恼为我的数据决定分组问题,在查找资料时,恰好看到机器学习中的无监督学习的聚类分析,正好适用于我的问题,但是我之前学机器学习时。正好没有学习无监督部分,因为我认为绝大多数问题都是有标签的监督学习,正是大意了,这不巧了正好遇上了,那就赶紧学习一下吧。
最近正在苦恼为我的数据决定分组问题,在查找资料时,恰好看到机器学习中的无监督学习的聚类分析,正好适用于我的问题,但是我之前学机器学习时。正好没有学习无监督部分,因为我认为绝大多数问题都是有标签的监督学习,真是大意了,这不巧了正好遇上了,那就赶紧学习一下吧。

说到无监督学习,还真是强大,无监督学习的优点是可以处理没有标签的数据,发现数据的潜在规律和特征,适用于探索性的数据分析。就好像不需要老师教,就可以自己根据数据之间的关系对数据进行分组。

因为我的问题比较适合K-means和DBSCAN解决,这篇文章我主要介绍这两种算法。
DBSCAN聚类分析是一种基于密度的聚类算法,它可以发现任意形状的簇,并且能够识别出噪声点。与之相比,K-means聚类算法是一种基于距离的聚类算法,它将数据划分为K个球形的簇,但是对噪声点和非球形的簇不太适合。下面我将用Python代码和图片来展示这两种算法的原理和效果。
首先,我们导入一些必要的库,如numpy, matplotlib, sklearn等,并生成一些随机的数据点,其中有四个簇和一些噪声点。
import os
os.environ["OMP_NUM_THREADS"] = "1"
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans, DBSCAN# 生成随机数据
X, y = make_blobs(n_samples=300, centers=4, cluster_std=0.6, random_state=0)
# 添加一些噪声点
X = np.r_[X, np.random.randn(10, 2) + [2, 2]]
plt.scatter(X[:, 0], X[:, 1], s=10, c='k')
plt.title('Raw data')
plt.show()
通过肉眼看到原始数据,还是比较聚集的,但是处于边界的这些点属于哪一个组(簇)呢,还是得通过聚类算法来确定。

k-means聚类分析
接下来,我们用K-means算法来对数据进行聚类,设置K=4,即我们想要得到四个簇。我们可以用sklearn库中的KMeans类来实现,它有以下几个重要的参数:
- n_clusters: 聚类的个数,即K值
- init: 初始质心的选择方法,可以是’random’或’k-means++',后者是一种优化的方法,可以加速收敛,但是是选择优化方法啦。🤭
- n_init: 随机初始化的次数,算法会选择其中最好的一次作为最终结果
- max_iter: 最大迭代次数,当迭代达到这个次数时,算法会停止,即使没有收敛
- tol: 容忍度,当质心的移动小于这个值时,算法会认为已经收敛,停止迭代
我们可以用fit函数来训练模型,用predict函数来对数据进行预测,用inertia_属性来获取误差平方和,用cluster_centers_属性来获取质心的坐标。代码如下:
# K-means聚类
kmeans = KMeans(n_clusters=4, init='k-means++', n_init=10, max_iter=300, tol=1e-4, random_state=0)
y_pred = kmeans.fit_predict(X)
sse = kmeans.inertia_
centers = kmeans.cluster_centers_
print('K-means SSE:', sse)
plt.scatter(X[:, 0], X[:, 1], s=10, c=y_pred)
plt.scatter(centers[:, 0], centers[:, 1], s=100, c='r', marker='*')
plt.title('K-means clustering')
plt.show()
k-means的均方差和为232.678,这个结果表示聚类效果还不错。


从-means聚类图中可以看出,K-means算法可以大致将数据分为四个簇,但是对于一些噪声点和边界点,它的划分效果不太理想,因为它只考虑了距离,而没有考虑密度。另外,K-means算法需要事先指定K值,如果K值不合适,可能会导致聚类效果很差。
DBSCAN聚类分析
下面,使用DBSCAN算法来对数据进行聚类,它不需要指定簇的个数,而是根据数据的密度来划分簇。我们可以用sklearn库中的DBSCAN类来实现,它有以下几个重要的参数:
- eps: 邻域半径,即判断一个点是否为核心点的距离阈值;
- min_samples: 邻域内的最小样本数,即判断一个点是否为核心点的密度阈值;
- metric: 距离度量方式,可以是’euclidean’,‘manhattan’,'cosine’等;
- algorithm: 邻域查询的算法,可以是’auto’,‘ball_tree’,‘kd_tree’,'brute’等,不同的算法有不同的时间和空间复杂度
然后可以用fit方法来训练模型,用fit_predict方法来对数据进行预测,用labels_属性来获取每个点的簇标签,用core_sample_indices_属性来获取核心点的索引。代码如下:
# DBSCAN聚类
dbscan = DBSCAN(eps=0.5, min_samples=5, metric='euclidean', algorithm='auto')
y_pred = dbscan.fit_predict(X)
labels = dbscan.labels_
core_indices = dbscan.core_sample_indices_
n_clusters = len(set(labels)) - (1 if -1 in labels else 0) # 去掉噪声点的簇个数
print('DBSCAN clusters:', n_clusters)
plt.scatter(X[:, 0], X[:, 1], s=10, c=y_pred)
plt.scatter(X[core_indices, 0], X[core_indices, 1], s=100, c='r', marker='*')
plt.title('DBSCAN clustering')
plt.show()
k-DBSCAN聚类分析总共是聚类了4个簇。


从图中可以看出,DBSCAN算法可以更好地将数据分为四个簇,并且能够识别出噪声点(黑色的点),因为它考虑了距离和密度,而且不需要事先指定簇的个数。另外,DBSCAN算法可以处理任意形状的簇,而不局限于球形的簇。
总结
总结一下,K-means和DBSCAN是两种常用的聚类算法,它们各有优缺点,适用于不同的场景。
K-means算法简单易懂,运行速度快,但是需要指定簇的个数,对噪声点和非球形的簇不太适合。DBSCAN算法不需要指定簇的个数,可以发现任意形状的簇,并且能够识别出噪声点,但是运行速度慢一些,对于不同密度的簇可能效果不好。
在实际应用中,还是需要根据数据的特点和需求来选择合适的聚类算法,不过如果愿意耐心多次对比参数,训练聚类分析算法,还是推荐DBSCAN算法。

相关文章:
超越标签的探索:K-means与DBSCAN在数据分析中的新视角
最近在苦恼为我的数据决定分组问题,在查找资料时,恰好看到机器学习中的无监督学习的聚类分析,正好适用于我的问题,但是我之前学机器学习时。正好没有学习无监督部分,因为我认为绝大多数问题都是有标签的监督学习&#…...
linux板子vscode gdb 远程调试
板子:hi3556v200 交叉编译工具:arm-himix200-linux 主机:win10虚拟机的ubuntu16.4 gdb:gdb-8.2.tar.gz 1.在ubuntu交叉编译gdb(Remote g packet reply is too long解决) 建议修改gdb8.2/gdb目录下面的remote.c解决…...
nginx代理服务器配置
nginx代理服务器配置 需要配置环境需求 1、一台1.1.1.1服务器,一台2.2.2.2服务器 前端包路径在1.1.1.1 /etc/dist 下 后端服务在2.2.2.2 上 暴露端口为9999 2、需求 现在需要访问 1.1.1.1:80访问到2.2.2.2 上面的9999后端服务 3、配置nginx ①:在…...
基于Matlab的视频人面检测识别,Matalb实现
博主简介: 专注、专一于Matlab图像处理学习、交流,matlab图像代码代做/项目合作可以联系(QQ:3249726188) 个人主页:Matlab_ImagePro-CSDN博客 原则:代码均由本人编写完成,非中介,提供…...
VSCode创建用户代码片段-案例demo
示例 - 在线生成代码片段 Vue3代码片段 {"vue3": {scope": "javascript,typescript,html,vue","prefix": "vue3","body": ["<template>","$1","</template>",""…...
河南大学-数字图像处理-图像变换
计算机与信息工程学院实验报告 序号:20 姓名:__杨馥瑞___ 学号:_2212080042_ 专业:__数据科学与大数据技术 年级:___2022级_____ 课程:数字图像处理 主讲教师:张延锋 辅导教师&#x…...
华为OD七日集训第3期 - 按算法分类,由易到难,循序渐进,玩转OD
目录 一、适合人群二、本期训练时间三、如何参加四、七日集训第 3 期五、精心挑选21道高频100分经典题目,作为入门。第1天、逻辑分析第2天、字符串处理第3天、矩阵第4天、深度优先搜索dfs算法第5天、回溯法第6天、二分查找第7天、图、正则表达式 大家好,…...
Android中的进程间通讯
一、简介 进程间通讯(InterProcess Communication) 指在不同进程之间传播或交换信息,Android是基于Linux 系统的,在Linux 中进程间是不能直接通讯的,IPC就是为了解决这一问题 每个操作系统都有相应的IPC机制&#x…...
day03vue学习
day03 一、今日目标 1.生命周期 生命周期介绍生命周期的四个阶段生命周期钩子声明周期案例 2.综合案例-小黑记账清单 列表渲染添加/删除饼图渲染 3.工程化开发入门 工程化开发和脚手架项目运行流程组件化组件注册 4.综合案例-小兔仙首页 拆分模块-局部注册结构样式完善…...
32. 最长有效括号
给你一个只包含 ( 和 ) 的字符串,找出最长有效(格式正确且连续)括号 子串 的长度。 示例 1: 输入:s "(()" 输出:2 解释:最长有效括号子串是 "()"示例 2: 输…...
如何在 docker 容器内部运行 docker命令
场景: 有些场景在容器内部需要调用 docker 命令。为此,本文梳理2种可以在容器内部执行docker命令的方法。 方法1:基于 docker.sock /var/run/docker.sock是默认的Unix socket(套接字),socket是同一机器中进程间通讯的一种方式。…...
Poly Kernel Inception Network在遥感检测中的应用
摘要 https://export.arxiv.org/pdf/2403.06258 遥感图像(RSI)中的目标检测经常面临一些日益严重的挑战,包括目标尺度的巨大变化和多样的上下文环境。先前的方法试图通过扩大骨干网络的空间感受野来解决这些挑战,要么通过大核卷积…...
tiktok 与 赵长鹏 遭遇了什么
对于美丽国来说,比特币是国家资产,赵长鹏动了国家资产的奶酪,当然要被消灭;新闻媒体是国家资产,TIKTOK作为新兴媒体也动了国家资产的奶酪,当然也在消灭之列;高端芯片、波音飞机也是国家资产&…...
Lua中文语言编程源码-第七节,更改lstrlib.c 标准字符串操作与模式匹配库函数, 使Lua加载中文库关键词(标准字符串操作与模式匹配库相关)
源码已经更新在CSDN的码库里: git clone https://gitcode.com/funsion/CLua.git在src文件夹下的lstrlib.c 标准字符串操作与模式匹配库函数,表明这个C源文件实现了Lua的标准字符串操作与模式匹配库,即提供了与字符串操作相关的API和功能实现…...
EtherCAT开源主站 IGH 介绍及主站伺服控制过程
目录 前言 IGH EtherCAT主站介绍 主要特点和功能 使用场景 SOEM 主站介绍 SOEM 的特点和功能 SOEM 的使用场景 IGH 主站 和 SOEM对比 1. 功能和复杂性 2. 资源消耗和移植性 3. 使用场景 EtherCAT 通信原理 EtherCAT主站控制伺服过程 位置规划模式 原点复归模式…...
自然语言:python实现自然语言处理中计算文件中的英语字母的熵
下面是一个示例代码,实现了计算文件中英语字母的熵的功能。 import mathdef calculate_entropy(text):# 统计字母的出现次数letter_count {}total_count 0for char in text:if char.isalpha():char char.lower()letter_count[char] letter_count.get(char, 0) …...
分类预测 | Matlab实现BiTCN双向时间卷积神经网络数据分类预测/故障识别
分类预测 | Matlab实现BiTCN双向时间卷积神经网络数据分类预测/故障识别 目录 分类预测 | Matlab实现BiTCN双向时间卷积神经网络数据分类预测/故障识别分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现BiTCN双向时间卷积神经网络数据分类预测/故障识别。 2.自…...
基于SpringBoot的后勤管理系统【附源码】
后勤管理系统开发说明 开发语言:Java 框架:ssm JDK版本:JDK1.8 服务器:tomcat7 数据库:mysql 5.7(一定要5.7版本) 数据库工具:Navicat11 开发软件:eclipse/myecli…...
智能仓储系统|基于JSP技术+ Mysql+Java+ Tomcat的智能仓储系统设计与实现(可运行源码+数据库+设计文档)
推荐阅读100套最新项目 最新ssmjava项目文档视频演示可运行源码分享 最新jspjava项目文档视频演示可运行源码分享 最新Spring Boot项目文档视频演示可运行源码分享 2024年56套包含java,ssm,springboot的平台设计与实现项目系统开发资源(可…...
Layui实现删除及修改后停留在当前页
1、功能概述? 我们在使用layui框架的table显示数据的时候,会经常的使用分页技术,这个我们期望能够期望修改数据能停留在当前页,或者删除数据的时候也能够停留在当前页,这样的用户体验会更好一些,但往往事与…...
Java 语言特性(面试系列1)
一、面向对象编程 1. 封装(Encapsulation) 定义:将数据(属性)和操作数据的方法绑定在一起,通过访问控制符(private、protected、public)隐藏内部实现细节。示例: public …...
Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...
基于ASP.NET+ SQL Server实现(Web)医院信息管理系统
医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...
23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...
c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...
ArcGIS Pro制作水平横向图例+多级标注
今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作:ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等(ArcGIS出图图例8大技巧),那这次我们看看ArcGIS Pro如何更加快捷的操作。…...
【开发技术】.Net使用FFmpeg视频特定帧上绘制内容
目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...
C#学习第29天:表达式树(Expression Trees)
目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...
STM32HAL库USART源代码解析及应用
STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...
pikachu靶场通关笔记19 SQL注入02-字符型注入(GET)
目录 一、SQL注入 二、字符型SQL注入 三、字符型注入与数字型注入 四、源码分析 五、渗透实战 1、渗透准备 2、SQL注入探测 (1)输入单引号 (2)万能注入语句 3、获取回显列orderby 4、获取数据库名database 5、获取表名…...
