当前位置: 首页 > news >正文

【C++】vector的模拟实现

文章目录

    • 1.查看STL源码
    • 2.vector的模拟实现
      • 1. 构造函数
        • 无参构造
        • 构造n个 val
        • 迭代器模板
      • 2. reserve
      • 3. 迭代器
      • 4.pop_back 尾删
      • 5.resize
      • 6.push_back
      • 7.insert
        • 迭代器失效—— pos为野指针
        • 迭代器失效——修改迭代器位置
      • 8. erase
        • 对于VS和Linux环境测试
    • 3.深浅拷贝问题
    • 4. 整体代码实现

1.查看STL源码

start、finish、end_of_storage 都是指针


通过观察函数的实现过程,可以得知 start与begin等价 ,end与finish等价

2.vector的模拟实现

为了模拟实现vector,所以使用自己的名空间包含vector类


1. 构造函数

无参构造

vector()//构造函数:_start(nullptr), _finish(nullptr), _end_of_storage(nullptr){}

只是将_start 、_finish 、_end_of_storage 初始化为nullptr

构造n个 val

vector(size_t n, const T& val = T()):_start(nullptr), _finish(nullptr), _end_of_storage(nullptr){reserve(n);//扩容for (int i = 0; i < n; i++){push_back(val);}}

正常来说匿名对象生命周期只有这一行,因为这行之后没有会用它了

当调用完匿名对象后,会调用析构函数


引用会延长匿名对象的生命周期到引用对象域结束,因为后面用xx就是用匿名对象
由于匿名对象具有常性,所以需要用const修饰
此时调用完匿名对象,并不会调用析构函数释放

迭代器模板

template <class InputIterator>//随机迭代器vector(InputIterator first, InputIterator last):_start(nullptr), _finish(nullptr), _end_of_storage(nullptr){//[first,last)while (first != last){push_back(*first);first++;}}
template <class InputIterator>//随机迭代器vector(InputIterator first, InputIterator last):_start(nullptr), _finish(nullptr), _end_of_storage(nullptr){//[first,last)while (first != last){push_back(*first);first++;}}

提供迭代器模板,可以使用任意类型迭代器

在这里插入图片描述

调用vector本身迭代器


对于数组和string类型也同样适用


2. reserve

void reserve(size_t n)//开辟空间{if (n > capacity())//避免缩容{size_t sz = size();T* tmp = new T[n];if (_start != NULL)//为NULL时没有意义{memcpy(tmp, _start, sizeof(T)*size());//拷贝数据delete[]_start;//释放旧空间}_start = tmp;//指向新空间_finish = tmp + sz;_end_of_storage = tmp + n;//容量变大了}}

为了避免缩容的情况,所以使用 n>capacity() , 开辟一块空间tmp,将start中的数据拷贝到新空间,释放旧空间,指向新空间,同时更新_finish 和_end_of_storage
在计算_finish的大小时,由于size里面的_start改变了,所以需要提前储存原来的size

3. 迭代器

typedef T* iterator;
typedef const T* const_iterator;
iterator begin(){return _start;}iterator end(){return _finish;}const_iterator begin()const {return _start;}const_iterator end()const{return _finish;}

正向迭代器的应用


反向迭代器的应用

此时v由const修饰,所以需要const_iterator类型的迭代器


4.pop_back 尾删

为了防止没有数据继续删除,使用断言报错

                bool empty(){return _start = _finish;}void pop_back()//尾删{assert(!empty());_finish--;}

5.resize

void resize(size_t n ,T val=T())//扩容+初始化{if (n < size())//删除数据{_finish = _start + n;}else{if (n > capacity()){reserve(n);//扩容}while (_finish != _start + n)//将剩余空间初始化{*_finish = val;_finish++;}}}

T val= T() ,T()是匿名对象,因为T模板泛型,所以有可能是内置类型int char,也有可能是自定义类型,为了两者都可以使用,所以使用匿名对象调用默认构造函数

内置类型也是有构造函数的


6.push_back

void push_back(const T& x)//尾插{if (_finish == _end_of_storage)//扩容{reserve(capacity() == 0 ? 4 : 2 * capacity());}*_finish = x;_finish++;}

需要考虑扩容问题,而若capacity本身为0的情况也要考虑

7.insert

void insert(iterator pos, const T& val)//在pos位置前插入n{assert(pos >= _start);assert(pos <= _finish);if (_finish == _end_of_storage){size_t len = pos - _start;//记录pos在旧空间所处位置reserve(capacity() == 0 ? 4 : capacity() * 2);//扩容后更新pos,解决pos失效的问题pos = _start +len;}iterator end = _finish-1;while (end >= pos){*(end+1) = *end ;end--;}*pos = val;_finish++;}

迭代器失效—— pos为野指针

扩容时出现了问题,由于pos指向原来的空间,但是扩容时将释放了旧空间,但是pos依旧指向原来的空间,所以pos变成了野指针
所以需要记录pos在旧空间所处位置,再更新pos在新空间的位置

迭代器失效——修改迭代器位置

加入修改迭代器位置后,会直接报错
形参pos位置的改变不会影响实参,所以pos依旧指向旧空间


在这里插入图片描述
若将形参pos加入引用,会报错,当调用begin时,因为是传值返回,所以返回临时对象,而临时对象具有常性,所以不能直接传给引用


在这里插入图片描述
为了解决这个问题,将修改指向的pos返回

8. erase

void  erase(iterator pos)//删除pos位置数据{assert(pos >= _start);assert(pos < _finish);iterator start = pos + 1;while (start != _finish){*(start - 1) = *start;start++;}_finish--;}

对于VS和Linux环境测试

在这里插入图片描述VS做了强制检查,只要使用了erase,迭代器就失效了,所以会报错


而同样的代码在Linux下会就能正常运行
在这里插入图片描述

遇到偶数就删除,并且每次结尾pos都会++,运行结束时正好pos位置等于finish


在这里插入图片描述

VS做了强制检查,使用erase后,迭代器失效了,所以会报错


在这里插入图片描述
同样的代码在Linux下就会发生段错误

假设为最后一个位置被删除,finish会移动到到最后到3位置的后面,同时pos++,此时pos位置已经在finish位置后面,就会造成一直循环下去

说明g++没有强制类型检查,具体问题具体分析,结果未定义

3.深浅拷贝问题

在这里插入图片描述

对内置类型调用默认拷贝构造函数会进行浅拷贝,所以需要我们自己来实现深拷贝


vector(const vector<T>& v)//拷贝构造{_start = new T[v.capacity()];memcpy(_start, v._start, sizeof(T) * v.size());_finish = _start + v.size();_end_of_storage = _start + v.capacity();}

若为上面内置类型,那报错的问题就可以解决了,但若为自定义类型依旧会报错

在这里插入图片描述
因为自己实现的拷贝构造中memcpy也是一种浅拷贝(按字节拷贝)

深拷贝是重新开辟一块与原空间大小相同的新空间,并将原空间的数据拷贝给新空间,但是若为string 类型,本身的_str指向字符串,而新空间只是将_str拷贝过去了,依旧指向同一字符串


v2先进行析构,会调用delete[ ] ,会对数组上每个成员依次调用析构函数,此时指向的字符串旧全部被析构了,
再次使v1析构,依旧会析构字符串,所以会报错
属于深拷贝内的浅拷贝

在这里插入图片描述


这样v1与v2中的_str都指向自己的字符串,不会发生析构两次的问题了


同样reserve也存在使用memcp造成浅拷贝的问题

在这里插入图片描述
将旧空间上的_str等拷贝到新空间上,释放旧空间就导致_str所指向的字符串析构


当新空间析构时,_str所指向的字符串就会造成二次析构,从而报错


在这里插入图片描述


在这里插入图片描述

4. 整体代码实现

#include<iostream>
#include<vector>
#include<assert.h>
#include<algorithm>
#include<functional>
using namespace std;
namespace yzq
{template <class T>class vector{public:typedef T* iterator;typedef const T* const_iterator;vector()//构造函数:_start(nullptr), _finish(nullptr), _end_of_storage(nullptr){}vector(size_t n, const T& val = T()):_start(nullptr), _finish(nullptr), _end_of_storage(nullptr){reserve(n);//扩容for (int i = 0; i < n; i++){push_back(val);}}vector(const vector<T>& v)//拷贝构造{reserve(v.capacity());for (size_t i = 0; i < v.size(); i++){_start[i] = v._start[i];}_finish = _start + v.size();}~vector(){delete[] _start;_start = _finish = _end_of_storage = nullptr;}void push_back(const T& x)//尾插{if (_finish == _end_of_storage)//扩容{reserve(capacity() == 0 ? 4 : 2 * capacity());}*_finish = x;_finish++;}size_t capacity()const{return _end_of_storage - _start;}size_t size() const{return _finish - _start;}void reserve(size_t n)//开辟空间{if (n > capacity())//避免缩容{size_t sz = size();T* tmp = new T[n];if (_start != NULL)//为NULL时没有意义{for (size_t i = 0; i < sz; i++)//深拷贝{tmp[i] = _start[i];}delete[]_start;//释放旧空间}_start = tmp;//指向新空间_finish = tmp + sz;_end_of_storage = tmp + n;//容量变大了}}T& operator[](size_t pos){assert(pos < size());//防止越界return _start[pos];}iterator begin(){return _start;}iterator end(){return _finish;}private:iterator _start;iterator _finish;iterator _end_of_storage;};
}int main()
{yzq::vector<std::string> v1(3, "111111111111111111111111");for (auto e : v1){cout << e << " ";}cout << endl;yzq::vector<std::string>v2(v1);v2.push_back("333333333"); v2.push_back("333333333");v2.push_back("333333333");for (auto e : v2){cout << e << " ";}cout << endl;
}

相关文章:

【C++】vector的模拟实现

文章目录1.查看STL源码2.vector的模拟实现1. 构造函数无参构造构造n个 val迭代器模板2. reserve3. 迭代器4.pop_back 尾删5.resize6.push_back7.insert迭代器失效—— pos为野指针迭代器失效——修改迭代器位置8. erase对于VS和Linux环境测试3.深浅拷贝问题4. 整体代码实现1.查…...

THUPC-2023 游记

清华校赛&#xff0c;战火重燃 原文链接 宣传图 上周四同学在洛谷无意间看到了宣传图&#xff0c;当时很有感触。不知觉间&#xff0c;又是一年春&#xff0c;又是一场触动心弦的 THUPC 了。 周五的团建过于有趣&#xff0c;致使我完全将 THUPC 抛之脑后了。 周日上午被省选…...

Linux - 磁盘I/O性能评估

文章目录概述RAID文件系统与裸设备的对比磁盘I/O性能评判标准常用命令“sar –d”命令组合“iostat –d”命令组合“iostat –x”单独统计某个磁盘的I/O“vmstat –d”命令组合小结概述 RAID 可以根据应用的不同&#xff0c;选择不同的RAID方式 如果一个应用经常有大量的读操…...

计算机网络--网络基础

目录 一.互联网的组成 ​编辑 1.互联网的边缘部分 1.1客户-服务器方式 1.2对等连接方式 ​编辑 2.互联网的核心部分 2.1电路交换 2.2分组交换 2.3报文交换 二.计算机网络的类别 1.按网络的作用范围进行分类 2.按网络的使用者进行分类 3.用来把用户接入互联…...

Gin 接口超时控制

文章目录1.Gin 的 Middleware2.gin-contrib/timeout3.小结参考文献API 是现代应用程序中的重要组成部分&#xff0c;可以用于提供数据和功能&#xff0c;供客户端应用程序访问。由于网络不稳定、服务器负载、网络拥堵等因素&#xff0c;API 请求可能会花费较长时间。这可能导致…...

1.C#与.NET简介

目录 一、C#语言及其特点 二、C#与.NET Framework/.NET Core关系 三、C#应用开发 四、案例展示 五、学习环境 一、C#语言及其特点 C#是美国微软公司发布的一种面向对象的&#xff0c;运行于 .NET Framework 和 .NET Core &#xff08;完全开源&#xff0c;跨平台&#xff…...

OpenAI CTO、吴恩达夫人……AI 领域值得关注的「她」力量,个个都是女强人

内容一览&#xff1a; 「她时代」来临&#xff0c;一些有着强大信念与热情的女性&#xff0c;纷纷投身至 AI 领域&#xff0c;成为不可或缺的存在与力量。值此国际妇女节到来之际&#xff0c;HyperAI超神经盘点了领域内令人印象深刻的杰出的女性代表。 关键词&#xff1a;国际妇…...

[ 网络 ] 应用层协议 —— HTTP协议

目录 1.HTTP协议 1.1URL urlencode和urldecode 2. HTTP协议格式 HTTP请求 HTTP响应 3.告知服务器意图的HTTP方法 GET&#xff1a;获取资源 POST&#xff1a;传输实体主体 GET和POST的区别 使用Cookie的状态管理 4.返回结果的HTTP状态码 状态码告知从服务器端返回的…...

Spring Boot 整合 Redisson 缓存性能客户端(2023-03-06)

Spring Boot 整合 Redisson 缓存 (官网) 介绍: Redisson是一个在Redis的基础上实现的Java驻内存数据网格&#xff08;In-Memory Data Grid&#xff09;。它不仅提供了一系列的分布式的Java常用对象&#xff0c;还提供了许多分布式服务。其中包括(BitSet, Set, Multimap, Sorte…...

【C和C++】输出100内能够被13整除的数,取模判断方法

目录 前言基础概念重温整除例子小知识点收尾前言 在软件行业已经有快十年,技术虽然一般般,但是足够应付和解决编程入门的相关问题! 都说十年磨一剑,积累到一定经验,是时候发挥自己的价值,给予入门的同行些许的帮助! 为什么要写收费专栏,其实原因很简单,时间就是金钱(…...

STC8单片机基于开源库读取DS18B20数据例程

STC8单片机基于开源库读取DS18B20数据例程 📍开源库FwLib_STC8 Github地址:https://github.com/IOsetting/FwLib_STC8📌STC官方STC8库函数资源:https://www.stcai.com/khs🎉本次利用FwLib_STC8库读取DS18B20,由于该开源库是基于VSCode编写,默认使用的是SDCC编译器,在…...

计算机专业毕业设计基于Spring Boot 学生在线考试系统

目录 一、学生端 1.1 登录 1.2 注册 1.3 学生首页 1.4 学生查看任务中心的试卷&#xff08;已答卷/未答卷&#xff09; 1.5 学生查看固定试卷以及开始做题 1.6 学生查看时段试卷以及开始做题 1.7 学生查看试卷中心 1.8 学生查看考试记录以及查看试卷 1.9 学生查看…...

【读书笔记】《深入浅出数据分析》第八章 启发法

目录一&#xff0c;什么是启发法&#xff1f;1&#xff0c;那什么是启发法&#xff1f;2&#xff0c;心理学上对启发法定义二&#xff0c;活动分析1&#xff0c;如何去分析活动效果呢&#xff1f;1.1 活动前期&#xff08;活动前1-2周&#xff09;1.2 活动中期1.3 活动结束一&a…...

英飞凌Tricore实战系列导读

本文框架 1.系列概述1.1 外设理论及应用介绍1.2 基于TC3xx的MCAL各外设配置开发1.3 基于TC3xx的Davinci工程开发1.4 项目中问题排查经验分享1.5 其他相关话题分享2. 目前已发布系列文章汇总1.系列概述 英飞凌TC3xx以其强大的性能,扩展性,存储及安全性能在汽车电子中扮演着越…...

做数据分析有前景吗?

当然有前景的。 每个行业都有发展前景&#xff0c;只是看你自身的技能情况或者关系人脉、软实力方面是否到位&#xff0c;不同的行业要求不一样。作为数据分析领域而言&#xff0c;属于IT行业&#xff0c;看的是你的专业技能&#xff1b;只要你技能过硬&#xff0c;就能在行业…...

Rust Web入门(六):服务器端web应用

本教程笔记来自 杨旭老师的 rust web 全栈教程&#xff0c;链接如下&#xff1a; https://www.bilibili.com/video/BV1RP4y1G7KF?p1&vd_source8595fbbf160cc11a0cc07cadacf22951 学习 Rust Web 需要学习 rust 的前置知识可以学习杨旭老师的另一门教程 https://www.bili…...

1.特定领域知识图谱知识融合方案(实体对齐):金融产业产业知识图谱-基于内容匹配和图模型的品牌知识链指

1 引言 供应链金融是一种围绕经营关系,以核心企业为依托,针对中小企业的新型金融服务。如何精准地还原企业间的经营关系,是供应链金融的关键所在。知识图谱是描绘实体间关系的网络结构,对于挖掘企业关系有重要意义。在真实场景中,仅有企业与用户的微观知识对于还原经营关系…...

前端基础语法合集

JS语法基础1-注释//单行注释/*......*/多行注释2-分号&#xff1b;用作分割javascript语句&#xff0c;可以省略。3-变量定义定义变量使用varvar a;//声明变量 var a100;//声明变量并赋值 var b,c;//声明多个变量 var d20;bd1;cb1;//一行多条语句要用;分割4-数据类型判断该变量…...

百亿补贴,京东的自卫反击战

“百亿补贴”这个词大家有没有很熟悉&#xff1f;大部分人应该是在看拼多多投放广告的时候&#xff0c;知道这个词的吧。而京东APP也于近日在升级11.6.2版本时&#xff0c;在更新日志中明确提到&#xff1a;“京东3.8节&#xff0c;百亿补贴上线”。至此&#xff0c;发酵数日的…...

融云入选中国信通院《高质量数字化转型产品及服务全景图》

企业数字化转型正在进入“深水区”。 3 月 3 日&#xff0c;“中国信息通信研究院&#xff08;以下简称中国信通院&#xff09;高质量数字化转型创新发展大会暨中国信通院‘铸基计划’年度峰会”在京召开&#xff0c;深度展示了中国信通院在数字化转型领域的工作成果&#xff…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

聊一聊接口测试的意义有哪些?

目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开&#xff0c;首…...

CMake控制VS2022项目文件分组

我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...

云原生玩法三问:构建自定义开发环境

云原生玩法三问&#xff1a;构建自定义开发环境 引言 临时运维一个古董项目&#xff0c;无文档&#xff0c;无环境&#xff0c;无交接人&#xff0c;俗称三无。 运行设备的环境老&#xff0c;本地环境版本高&#xff0c;ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

代码规范和架构【立芯理论一】(2025.06.08)

1、代码规范的目标 代码简洁精炼、美观&#xff0c;可持续性好高效率高复用&#xff0c;可移植性好高内聚&#xff0c;低耦合没有冗余规范性&#xff0c;代码有规可循&#xff0c;可以看出自己当时的思考过程特殊排版&#xff0c;特殊语法&#xff0c;特殊指令&#xff0c;必须…...

什么是VR全景技术

VR全景技术&#xff0c;全称为虚拟现实全景技术&#xff0c;是通过计算机图像模拟生成三维空间中的虚拟世界&#xff0c;使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验&#xff0c;结合图文、3D、音视频等多媒体元素…...

WPF八大法则:告别模态窗口卡顿

⚙️ 核心问题&#xff1a;阻塞式模态窗口的缺陷 原始代码中ShowDialog()会阻塞UI线程&#xff0c;导致后续逻辑无法执行&#xff1a; var result modalWindow.ShowDialog(); // 线程阻塞 ProcessResult(result); // 必须等待窗口关闭根本问题&#xff1a…...

goreplay

1.github地址 https://github.com/buger/goreplay 2.简单介绍 GoReplay 是一个开源的网络监控工具&#xff0c;可以记录用户的实时流量并将其用于镜像、负载测试、监控和详细分析。 3.出现背景 随着应用程序的增长&#xff0c;测试它所需的工作量也会呈指数级增长。GoRepl…...

Win系统权限提升篇UAC绕过DLL劫持未引号路径可控服务全检项目

应用场景&#xff1a; 1、常规某个机器被钓鱼后门攻击后&#xff0c;我们需要做更高权限操作或权限维持等。 2、内网域中某个机器被钓鱼后门攻击后&#xff0c;我们需要对后续内网域做安全测试。 #Win10&11-BypassUAC自动提权-MSF&UACME 为了远程执行目标的exe或者b…...