当前位置: 首页 > news >正文

时序预测 | Matlab实现BiTCN-BiLSTM双向时间卷积神经网络结合双向长短期记忆神经网络时间序列预测

时序预测 | Matlab实现BiTCN-BiLSTM双向时间卷积神经网络结合双向长短期记忆神经网络时间序列预测

目录

    • 时序预测 | Matlab实现BiTCN-BiLSTM双向时间卷积神经网络结合双向长短期记忆神经网络时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现BiTCN-BiLSTM双向时间卷积神经网络结合双向长短期记忆神经网络时间序列预测(完整源码和数据),单变量时间序列预测,运行环境matlab2023及以上,excel数据,方便替换;
2.评价指标RMSE、MAPE、MAE、MSE、R2等;
3.程序语言为matlab,程序可出预测效果图,误差分析图。
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

在这里插入图片描述

BiTCN-BiLSTM是双向时间卷积神经网络(BiTCN)与双向长短期记忆神经网络(BiLSTM)的结合,用于时间序列预测。这种组合模型充分利用了两种网络结构的优势,旨在提高时间序列预测的精度和效率。

首先,BiTCN通过卷积操作捕捉时间序列中的局部特征,同时其双向结构允许网络从前向和后向两个方向提取信息,从而更全面地理解数据。这种结构使得BiTCN能够学习到数据中的复杂模式和结构。

而BiLSTM则是一种特殊的循环神经网络,通过引入长短期记忆机制,能够处理长距离依赖关系,有效记住并利用历史信息。其双向结构则使得网络能够同时考虑前向和后向的上下文信息,从而进一步提高预测的准确性。

将BiTCN和BiLSTM结合,可以使得模型既能够捕捉到时间序列的局部特征,又能够处理长距离依赖关系,同时充分利用前后向的上下文信息。这种组合模型在时间序列预测中具有很大的潜力,可以应用于各种需要预测未来趋势的场景,如金融市场预测、气象预测、能源需求预测等。

需要注意的是,BiTCN-BiLSTM模型的训练和调优可能需要大量的数据和计算资源,并且需要对模型参数进行精细调整以优化性能。此外,对于不同的应用场景和数据集,可能需要设计不同的网络结构和参数设置来达到最佳的预测效果。

总的来说,BiTCN-BiLSTM是一种强大的时间序列预测模型,结合了卷积神经网络和循环神经网络的优点,具有广泛的应用前景。

程序设计

  • 完整源码和数据获取方式资源出下载Matlab实现BiTCN-BiLSTM双向时间卷积神经网络结合双向长短期记忆神经网络时间序列预测 。
% 添加残差块到网络lgraph = addLayers(lgraph, layers);% 连接卷积层到残差块lgraph = connectLayers(lgraph, outputName, "conv1_" + i);% 创建 TCN反向支路flip网络结构Fliplayers = [FlipLayer("flip_" + i)                                                                                               % 反向翻转convolution1dLayer(1, numFilters, Name = "convSkip_"+i);                                                             % 反向残差连接convolution1dLayer(filterSize, numFilters, DilationFactor = dilationFactor, Padding = "causal", Name="conv2_" + i)   % 一维卷积层layerNormalizationLayer                                                                                              % 层归一化spatialDropoutLayer(dropoutFactor)                                                                                   % 空间丢弃层convolution1dLayer(filterSize, numFilters, DilationFactor = dilationFactor, Padding = "causal")                      % 一维卷积层layerNormalizationLayer                                                                                              % 层归一化reluLayer                                                                                                            % 激活层spatialDropoutLayer(dropoutFactor, Name="drop" + i)                                                                  % 空间丢弃层];% 添加 flip 网络结构到网络lgraph = addLayers(lgraph, Fliplayers);% 连接 flip 卷积层到残差块lgraph = connectLayers(lgraph, outputName, "flip_" + i);lgraph = connectLayers(lgraph, "drop" + i, "add_" + i + "/in3");lgraph = connectLayers(lgraph, "convSkip_"+i, "add_" + i + "/in4");% 残差连接 -- 首层if i == 1% 建立残差卷积层% Include convolution in first skip connection.layer = convolution1dLayer(1,numFilters,Name="convSkip");lgraph = addLayers(lgraph,layer);lgraph = connectLayers(lgraph,outputName,"convSkip");lgraph = connectLayers(lgraph,"convSkip","add_" + i + "/in2");elselgraph = connectLayers(lgraph,outputName,"add_" + i + "/in2");end% Update layer output name.outputName = "add_" + i;
end
% CSDN 机器学习之心

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关文章:

时序预测 | Matlab实现BiTCN-BiLSTM双向时间卷积神经网络结合双向长短期记忆神经网络时间序列预测

时序预测 | Matlab实现BiTCN-BiLSTM双向时间卷积神经网络结合双向长短期记忆神经网络时间序列预测 目录 时序预测 | Matlab实现BiTCN-BiLSTM双向时间卷积神经网络结合双向长短期记忆神经网络时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现BiTCN…...

基于 Linux 的更新版 MaxPatrol VM 可扫描 Windows

👾 MaxPatrol VM 2.1 是俄罗斯唯一一款可以安装在 Linux 上并以审计和五重测试模式扫描 Windows 主机(甚至是旧版本)的漏洞管理产品。 让我们告诉你更新后的 MaxPatrol VM 还有哪些有用的功能: 1. 由于采用了新的数据存储模式&a…...

【软件开发】给Ubuntu 18.04虚拟机安装最新的Python 3.12.2

一、前言 笔者在Windows 11主机上安装有Ubuntu 18.04虚拟机(使用虚拟化平台Oracle VM VirtualBox),在Python3.6的使用过程中遇到了问题,决定安装Python 3.12.2,在此记录安装过程。 二、安装过程(在Ubuntu…...

鸿蒙NXET实战:高德地图定位SDK【获取Key+获取定位数据】(二)

如何申请key 1、创建新应用 进入[控制台],创建一个新应用。如果您之前已经创建过应用,可直接跳过这个步骤。 2、添加新Key 在创建的应用上点击"添加新Key"按钮,在弹出的对话框中,依次:输入应用名名称&…...

Dubbo管理控制台

1.将资料中的dubbo-admin-2.6.0.war文件复制到tomcat的webapps目录下 2.启动tomcat,修改WEB-INF下的dubbo.properties文件 #如果Zookeeper是安装在虚拟机上的那么注册中心的地址需要修改为虚拟机的ip地址 dubbo.registry.addresszookeeper://192.168.100.110:2181 dubbo.admin…...

CSS问题精粹1

1.关于消除<li>列表前的符号 我相信很多人在初学CSS时会遇到该问题&#xff0c;无论是创作导航&#xff0c;还是列表&#xff0c;前面都会有个黑点点或其它符号。 解决该问题其实很简单 采用list-style-type:none或list-style:none直接解决 如果你想更换前面的黑点点&a…...

neo4j所有关系只显示RELATION,而不显示具体的关系

当看r时&#xff0c;真正的关系在properties中的type里&#xff0c;而type为“RELATION” 造成这个的原因是&#xff1a; 在创建关系时&#xff0c;需要指定关系的类型&#xff0c;这是固定的&#xff0c;不能像属性那样从CSV文件的一个字段动态赋值。标准的Cypher查询语言不支…...

VMware和Xshell连接

1.开启虚拟机 2.使用管理员账户&#xff0c;点击未列出 3.输入用户名密码 4.点击编辑虚拟网络编辑器 5.记住自己的网关和IP地址 6.打开终端 7.输入命令&#xff0c;vim / etc / sysconfig / network -scripts / ifcfg-ens33 回车 8.修改图中两处按“ I ”键进入编辑 d…...

【C语言进阶篇】编译和链接

【C语言进阶篇】编译和链接 &#x1f955;个人主页&#xff1a;开敲&#x1f349; &#x1f525;所属专栏&#xff1a;C语言&#x1f353; &#x1f33c;文章目录&#x1f33c; 编译环境与运行环境 1. 翻译环境 2. 编译环境&#xff1a;预编译&#xff08;预处理&#xff09;编…...

pytorch+tensorboard

安装依赖 pip install teorboard pip install torch_tb_profiler了解teorboard 记录并可视化标量[组]、图片[组]。 如何使用 第一步:构建模型,记录中间值,写入summarywriter 每次写入一个标量add_scalar 比如: from torch.utils.tensorboard import SummaryWriter wr…...

PTA------ 敲笨钟

字符串处理问题&#xff01;------->字符串处理相关操做 代码&#xff1a; #include <iostream> #include<algorithm> #include<cmath> #include<cstring> #include<set> #include<stack> #include<queue> #include<map>…...

关于HashSet的五个问题

1.HashSet集合的底层数据结构是什么样的? HashSet 集合的底层数据结构是哈希表&#xff0c;它是由一个数组和链表&#xff08;或红黑树&#xff0c;具体取决于 JDK 版本&#xff09;组成的数据结构。 数组&#xff1a;哈希表的主要部分是一个数组&#xff0c;它的每个位置称为…...

linux性能调优汇总(一)cpu

目录 一、引言 二、CPU ------>2.1、/proc/cpuinfo ------>2.2、cpuid指令 ------>2.3、lscpu ------>2.4、turbostat ------>2.5、rdmsr ------>2.6、perf ------>2.7、top ------>2.8、ps ------>2.9、pidstat 查看每个进程CPU、内存、…...

CSS object-fit 属性

object-fit 属性指定元素的内容应该如何去适应指定容器的高度与宽度。 object-fit 一般用于 img 和 video 标签&#xff0c;一般可以对这些元素进行保留原始比例的剪切、缩放或者直接进行拉伸等。 您可以通过使用 object-position 属性来切换被替换元素的内容对象在元素框内的…...

使用LangChain LCEL生成RAG应用、使用LangChain TruLens对抗RAG幻觉

# 导入LangChain的库 from langchain import *# 加载数据源 loader WebBaseLoader() doc loader.load("https://xxx.html")# 分割文档对象 splitter RecursiveCharacterTextSplitter(max_length512) docs splitter.split(doc)# 转换文档对象为嵌入&#xff0c;并…...

npm淘宝镜像源更新

目录 前情提要&#xff1a; 背景&#xff1a; 镜像源更新&#xff1a; 清楚缓存&#xff1a; 直接切换镜像源&#xff1a; 补充&#xff1a; 错误解释&#xff1a; 解决方法&#xff1a; 前情提要&#xff1a; 2024 /1 /22 &#xff0c;registry.npm.taobao.org淘宝镜像源的SSL…...

Navicat 干货 | 探索 PostgreSQL 的外部数据包装器和统计函数

PostgreSQL 因其稳定性和可扩展性而广受青睐&#xff0c;为开发人员和数据管理员提供了许多有用的函数。在这些函数中&#xff0c;file_fdw_handler、file_fdw_validator、pg_stat_statements、pg_stat_statements_info 以及 pg_stat_statements_reset 是其中的重要函数&#x…...

耳目一新的滑块版登录注册界面~

又到了毕业季&#xff0c;大家做毕设的时候总会参考已有的案例&#xff0c;不过大多产品的样式非常单一雷同。本帖博主给大家分享一个比较别树一帜的登录界面&#xff0c;如下&#xff1a; 如果没有账号&#xff0c;点击“去注册”&#xff0c;则会产生如下的效果&#xff1a; …...

分布式系统的发展史

目录 &#x1f433;今日良言&#xff1a;且视他人之疑目如盏盏鬼火&#xff0c;大胆地去走自己的夜路 &#x1f407;一、常见概念 &#x1f407;二、发展史 今日良言&#xff1a;且视他人之疑目如盏盏鬼火&#xff0c;大胆地去走自己的夜路 一、常见概念 在正式介绍分布式系…...

2024年腾讯云服务器最新价格表,CPU内存带宽系统盘报价

腾讯云服务器价格表2024年最新价格&#xff0c;轻量2核2G3M服务器61元一年、2核2G4M服务器99元1年&#xff0c;三年560元、2核4G5M服务器165元一年、3年900元、轻量4核8M12M服务器646元15个月、4核16G10M配置32元1个月、8核32G配置115元1个月&#xff0c;345元3个月。CVM云服务…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天&#xff0c;再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至&#xff0c;这不仅是开发者的盛宴&#xff0c;更是全球数亿苹果用户翘首以盼的科技春晚。今年&#xff0c;苹果依旧为我们带来了全家桶式的系统更新&#xff0c;包括 iOS 26、iPadOS 26…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...

【生成模型】视频生成论文调研

工作清单 上游应用方向&#xff1a;控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换

目录 关键点 技术实现1 技术实现2 摘要&#xff1a; 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式&#xff08;自动驾驶、人工驾驶、远程驾驶、主动安全&#xff09;&#xff0c;并通过实时消息推送更新车…...

HTML前端开发:JavaScript 获取元素方法详解

作为前端开发者&#xff0c;高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法&#xff0c;分为两大系列&#xff1a; 一、getElementBy... 系列 传统方法&#xff0c;直接通过 DOM 接口访问&#xff0c;返回动态集合&#xff08;元素变化会实时更新&#xff09;。…...

SpringAI实战:ChatModel智能对话全解

一、引言&#xff1a;Spring AI 与 Chat Model 的核心价值 &#x1f680; 在 Java 生态中集成大模型能力&#xff0c;Spring AI 提供了高效的解决方案 &#x1f916;。其中 Chat Model 作为核心交互组件&#xff0c;通过标准化接口简化了与大语言模型&#xff08;LLM&#xff0…...