C# Onnx Yolov9 Detect 物体检测
目录
介绍
效果
项目
模型信息
代码
下载
C# Onnx Yolov9 Detect 物体检测
介绍
yolov9 github地址:https://github.com/WongKinYiu/yolov9
Implementation of paper - YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information
效果
项目
模型信息
Model Properties
-------------------------
stride:32
names:{0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus', 6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant', 11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat', 16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear', 22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag', 27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard', 32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove', 36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle', 40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl', 46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli', 51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake', 56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table', 61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard', 67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink', 72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors', 77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'}
---------------------------------------------------------------
Inputs
-------------------------
name:images
tensor:Float[1, 3, 640, 640]
---------------------------------------------------------------
Outputs
-------------------------
name:output0
tensor:Float[1, 84, 8400]
name:1876
tensor:Float[1, 84, 8400]
---------------------------------------------------------------
代码
using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using System.Windows.Forms;
namespace Onnx_Yolov9_Demo
{
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
}
string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
string image_path = "";
string startupPath;
string classer_path;
DateTime dt1 = DateTime.Now;
DateTime dt2 = DateTime.Now;
string model_path;
Mat image;
DetectionResult result_pro;
Mat result_image;
SessionOptions options;
InferenceSession onnx_session;
Tensor<float> input_tensor;
List<NamedOnnxValue> input_container;
IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
DisposableNamedOnnxValue[] results_onnxvalue;
Tensor<float> result_tensors;
private void button1_Click(object sender, EventArgs e)
{
OpenFileDialog ofd = new OpenFileDialog();
ofd.Filter = fileFilter;
if (ofd.ShowDialog() != DialogResult.OK) return;
pictureBox1.Image = null;
image_path = ofd.FileName;
pictureBox1.Image = new Bitmap(image_path);
textBox1.Text = "";
image = new Mat(image_path);
pictureBox2.Image = null;
}
private void button2_Click(object sender, EventArgs e)
{
if (image_path == "")
{
return;
}
// 图片缩放
image = new Mat(image_path);
int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
Rect roi = new Rect(0, 0, image.Cols, image.Rows);
image.CopyTo(new Mat(max_image, roi));
float[] result_array = new float[8400 * 84];
float[] factors = new float[2];
factors[0] = factors[1] = (float)(max_image_length / 640.0);
// 将图片转为RGB通道
Mat image_rgb = new Mat();
Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);
Mat resize_image = new Mat();
Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));
// 输入Tensor
// input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });
for (int y = 0; y < resize_image.Height; y++)
{
for (int x = 0; x < resize_image.Width; x++)
{
input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;
input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;
input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;
}
}
//将 input_tensor 放入一个输入参数的容器,并指定名称
input_container.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));
dt1 = DateTime.Now;
//运行 Inference 并获取结果
result_infer = onnx_session.Run(input_container);
dt2 = DateTime.Now;
// 将输出结果转为DisposableNamedOnnxValue数组
results_onnxvalue = result_infer.ToArray();
// 读取第一个节点输出并转为Tensor数据
result_tensors = results_onnxvalue[0].AsTensor<float>();
result_array = result_tensors.ToArray();
resize_image.Dispose();
image_rgb.Dispose();
result_pro = new DetectionResult(classer_path, factors);
result_image = result_pro.draw_result(result_pro.process_result(result_array), image.Clone());
if (!result_image.Empty())
{
pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
}
else
{
textBox1.Text = "无信息";
}
}
private void Form1_Load(object sender, EventArgs e)
{
startupPath = System.Windows.Forms.Application.StartupPath;
model_path = startupPath + "\\yolov9-c.onnx";
classer_path = startupPath + "\\lable.txt";
// 创建输出会话,用于输出模型读取信息
options = new SessionOptions();
options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
// 设置为CPU上运行
options.AppendExecutionProvider_CPU(0);
// 创建推理模型类,读取本地模型文件
onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径
// 输入Tensor
input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });
// 创建输入容器
input_container = new List<NamedOnnxValue>();
}
}
}
using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using System.Windows.Forms;namespace Onnx_Yolov9_Demo
{public partial class Form1 : Form{public Form1(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";string startupPath;string classer_path;DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;string model_path;Mat image;DetectionResult result_pro;Mat result_image;SessionOptions options;InferenceSession onnx_session;Tensor<float> input_tensor;List<NamedOnnxValue> input_container;IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;DisposableNamedOnnxValue[] results_onnxvalue;Tensor<float> result_tensors;private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);textBox1.Text = "";image = new Mat(image_path);pictureBox2.Image = null;}private void button2_Click(object sender, EventArgs e){if (image_path == ""){return;}// 图片缩放image = new Mat(image_path);int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);Rect roi = new Rect(0, 0, image.Cols, image.Rows);image.CopyTo(new Mat(max_image, roi));float[] result_array = new float[8400 * 84];float[] factors = new float[2];factors[0] = factors[1] = (float)(max_image_length / 640.0);// 将图片转为RGB通道Mat image_rgb = new Mat();Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);Mat resize_image = new Mat();Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));// 输入Tensor// input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });for (int y = 0; y < resize_image.Height; y++){for (int x = 0; x < resize_image.Width; x++){input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;}}//将 input_tensor 放入一个输入参数的容器,并指定名称input_container.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));dt1 = DateTime.Now;//运行 Inference 并获取结果result_infer = onnx_session.Run(input_container);dt2 = DateTime.Now;// 将输出结果转为DisposableNamedOnnxValue数组results_onnxvalue = result_infer.ToArray();// 读取第一个节点输出并转为Tensor数据result_tensors = results_onnxvalue[0].AsTensor<float>();result_array = result_tensors.ToArray();resize_image.Dispose();image_rgb.Dispose();result_pro = new DetectionResult(classer_path, factors);result_image = result_pro.draw_result(result_pro.process_result(result_array), image.Clone());if (!result_image.Empty()){pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";}else{textBox1.Text = "无信息";}}private void Form1_Load(object sender, EventArgs e){startupPath = System.Windows.Forms.Application.StartupPath;model_path = startupPath + "\\yolov9-c.onnx";classer_path = startupPath + "\\lable.txt";// 创建输出会话,用于输出模型读取信息options = new SessionOptions();options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;// 设置为CPU上运行options.AppendExecutionProvider_CPU(0);// 创建推理模型类,读取本地模型文件onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径// 输入Tensorinput_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });// 创建输入容器input_container = new List<NamedOnnxValue>();}}
}
下载
源码下载
相关文章:

C# Onnx Yolov9 Detect 物体检测
目录 介绍 效果 项目 模型信息 代码 下载 C# Onnx Yolov9 Detect 物体检测 介绍 yolov9 github地址:https://github.com/WongKinYiu/yolov9 Implementation of paper - YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information…...

Flink SQL 基于Update流出现空值无法过滤问题
问题背景 问题描述 基于Flink-CDC ,Flink SQL的实时计算作业在运行一段时间后,突然发现插入数据库的计算结果发生部分主键属性发生失败,导致后续计算结果无法插入, 超过失败次数失败的情况问题报错 Caused by: java.sql.BatchUp…...

git-怎样把连续的多个commit合并成一个?
Git怎样把连续的多个commit合并成一个? Git怎样把连续的多个commit合并成一个? 参考URL: https://www.jianshu.com/p/5b4054b5b29e 查看git日志 git log --graph比如下图的commit 历史,想要把bai “Second change” 和 “Third change” 这…...

2024年2月游戏手柄线上电商(京东天猫淘宝)综合热销排行榜
鲸参谋监测的线上电商(京东天猫淘宝)游戏手柄品牌销售数据已出炉!2月游戏手柄销售数据呈现出强劲的增长势头。 根据鲸参谋数据显示,今年2月游戏手柄月销售量累计约43万件,同比去年上涨了78%;销售额累计达1…...
Sass5分钟速通基础语法
前言 近来在项目中使用sass,想着学习一下,但官方写的教程太冗杂,所以就有了本文速通Sass的基础语法 Sass 是 CSS 的一种预编译语言。它提供了 变量(variables)、嵌套规则(nested rules)、 混合(mixins) 等…...

百度蜘蛛池平台在线发外链-原理以及搭建教程
蜘蛛池平台是一款非常实用的SEO优化工具,它可以帮助网站管理员提高网站的排名和流量。百度蜘蛛池原理是基于百度搜索引擎的搜索算法,通过对网页的内容、结构、链接等方面进行分析和评估,从而判断网页的质量和重要性,从而对网页进行…...
Android_ android使用原生蓝牙协议_连接设备以后,给设备发送指令触发数据传输---Android原生开发工作笔记167
之前通过蓝牙连接设备的时候,直接就是连接上蓝牙以后,设备会自动发送数据,有数据的时候,会自动发送,但是,有一个设备就不会,奇怪了很久,设备启动了也连接上了,但是就是没有数据过来. 是因为,这个设备有几种模式是握力球,在设备连接到蓝牙以后,需要,给设备通过蓝牙发送一个指令…...

【Java面试题】操作系统
文章目录 1.进程/线程/协程1.1辨别进程和线程的异同1.2优缺点1.2.1进程1.2.2线程 1.3进程/线程之间通信的方法1.3.1进程之间通信的方法1.3.2线程之间通信的方法 1.4什么是线程上下文切换1.5协程1.5.1协程的定义?1.5.2使用协程的原因?1.5.3协程的优缺点&a…...

SQLite数据库成为内存中数据库(三)
返回:SQLite—系列文章目录 上一篇:SQLite使用的临时文件(二) 下一篇:SQLite中的原子提交(四) SQLite数据库通常存储在单个普通磁盘中文件。但是,在某些情况下,数据库可能…...

多张图片怎么合成一张gif?快来试试这个方法
将多张图片合成一张gif动图是现在常见的图像处理的方式,适合制作一些简单的动态图片。通过使用在线图片合成网站制作的gif动图不仅体积小画面丰富,画质还很清晰。不需要下载任何软件小白也能轻松上手,支持上传jpg、png以及gif格式图片&#x…...

爬取b站音频和视频数据,未合成一个视频
一、首先找到含有音频和视频的url地址 打开一个视频,刷新后,找到这个包,里面有我们所需要的数据 访问这个数据包后,获取字符串数据,用正则提取,再转为json字符串方便提取。 二、获得标题和音频数据后&…...

mysql进阶知识总结
1.存储引擎 1.1MySQL体系结构 1).连接层 最上层是一些客户端和链接服务,包含本地sock通信和大多数基于客户端/服务端工具实现的类似于TCP/IP的通信。主要完成一些类似于连接处理、授权认证、及相关的安全方案。在该层上引入了线程池的概念,为通过认证…...

量化交易入门(二十五)什么是RSI,原理和炒股实操
前面我们了解了KDJ,MACD,MTM三个技术指标,也进行了回测,结果有好有坏,今天我们来学习第四个指标RSI。RSI指标全称是相对强弱指标(Relative Strength Index),是通过比较一段时期内的平均收盘涨数和平均收盘跌数来分析市…...

快速上手Spring Cloud 九:服务间通信与消息队列
快速上手Spring Cloud 一:Spring Cloud 简介 快速上手Spring Cloud 二:核心组件解析 快速上手Spring Cloud 三:API网关深入探索与实战应用 快速上手Spring Cloud 四:微服务治理与安全 快速上手Spring Cloud 五:Spring …...
python——遍历网卡并禁用/启用
一、遍历网卡 注意:只能遍历到启用状态的网卡,如果网卡是禁止状态,则遍历不到!!! import os import time import psutil import loggingdef get_multi_physical_network_card():physical_nic_list []try:…...
初识 51
keil的使用: 具体细节请移步我上一篇博客:创建第一个51文件-CSDN博客 hex -- 汇编语言实现的文件 -- 直接与单片机对接的文件 单片机 -- 一个集成电脑芯片 单片机开发版 -- 基于单片机的集成电路 stc 89 c52RC / RD 系列单片机 命名规则: 89 -- 版本号? C --…...

【回溯与邻里交换】纸牌三角
1.回溯算法 旋转有3种可能,镜像有2种 所以最后次数:counts/3/2 #include<iostream> using namespace std;int num[9]; int counts0; bool bools[9];//默认为false int dfs(int step){if(step9){//索引 if((num[0]num[1]num[2]num[3]num[3]num[4]n…...

微服务(基础篇-004-Feign)
目录 http客户端Feign Feign替代RestTemplate(1) Feign的介绍(1.1) 使用Feign的步骤(1.2) 自定义配置(2) 配置Feign日志的两种方式(2.1) Feign使用优化…...

Linux IRC
目录 入侵框架检测 检测流程图 账号安全 查找账号中的危险信息 查看保存的历史命令 检测异常端口 入侵框架检测 1、系统安全检查(进程、开放端口、连接、日志) 这一块是目前个人该脚本所实现的功能 2、Rootkit 建议使用rootkit专杀工具来检查&#…...

五、Elasticsearch 集成
目录 5.1 Spring Data 框架集成5.1.1 Spring Data 框架介绍5.1.2 Spring Data Elasticsearch 介绍5.1.3 Spring Data Elasticsearch 版本对比5.1.4 集成步骤 5.1 Spring Data 框架集成 5.1.1 Spring Data 框架介绍 Spring Data 是一个用于简化数据库开发的开源框架。其主要目…...
KubeSphere 容器平台高可用:环境搭建与可视化操作指南
Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...

优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
蓝桥杯 冶炼金属
原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...

Vue ③-生命周期 || 脚手架
生命周期 思考:什么时候可以发送初始化渲染请求?(越早越好) 什么时候可以开始操作dom?(至少dom得渲染出来) Vue生命周期: 一个Vue实例从 创建 到 销毁 的整个过程。 生命周期四个…...

热烈祝贺埃文科技正式加入可信数据空间发展联盟
2025年4月29日,在福州举办的第八届数字中国建设峰会“可信数据空间分论坛”上,可信数据空间发展联盟正式宣告成立。国家数据局党组书记、局长刘烈宏出席并致辞,强调该联盟是推进全国一体化数据市场建设的关键抓手。 郑州埃文科技有限公司&am…...
xmind转换为markdown
文章目录 解锁思维导图新姿势:将XMind转为结构化Markdown 一、认识Xmind结构二、核心转换流程详解1.解压XMind文件(ZIP处理)2.解析JSON数据结构3:递归转换树形结构4:Markdown层级生成逻辑 三、完整代码 解锁思维导图新…...

rm视觉学习1-自瞄部分
首先先感谢中南大学的开源,提供了很全面的思路,减少了很多基础性的开发研究 我看的阅读的是中南大学FYT战队开源视觉代码 链接:https://github.com/CSU-FYT-Vision/FYT2024_vision.git 1.框架: 代码框架结构:readme有…...