Pandas | value_counts() 的详细用法
value_counts() 函数得作用
用来统计数据表中,指定列里有多少个不同的数据值,并计算每个不同值有在该列中的个数,同时还能根据指定得参数返回排序后结果。
返回得是Series对象
value_counts(values,sort=True, ascending=False, normalize=False,bins=None,dropna=True)
sort=True: 是否要进行排序;默认进行排序
ascending=False: 默认降序排列;
normalize=False: 是否要对计算结果进行标准化并显示标准化后的结果,默认是False。
bins=None: 可以自定义分组区间,默认是否
dropna=True:是否删除缺失值nan,默认删除
数据集:

要求:统计不同lable出现得次数
任何参数都不带
train_df['label'].value_counts() 
ascending=True

normalize=True
数据标准化:在多指标评价体系中,由于各评价指标的性质不同,通常具有不同的量纲和数量级。当各指标间的水平相差很大时,如果直接用原始指标值进行分析,就会突出数值较高的指标在综合分析中的作用,相对削弱数值水平较低指标的作用。因此,为了保证结果的可靠性,需要对原始指标数据进行标准化处理。
数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间。在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。
train_df['label'].value_counts(ascending=False,normalize=True)
数据标准化以后,所有得项得和为1(可能因为计算机存储数据而有误差)
常用来计算各数据占的比例

bins分组统计
对于数值型的可以进行分组,分组以后返回结果

几种使用方式
- 先取出列(Series对象),然后调用函数这时候相当于
- train_df['label'].value_counts()
- DataFrame对每一列都进行统计
- train_df.apply(pd.value_counts)
- 直接使用Pandas调用
- pd.value_counts(train_df['label'],ascending=True)
同样的统计还可以使用 groupby,这个的过程是先按‘label’分组然后再统计每组的值,这样的效率较低,不建议使用
train_df.groupby('label').count()
相关文章:
Pandas | value_counts() 的详细用法
value_counts() 函数得作用 用来统计数据表中,指定列里有多少个不同的数据值,并计算每个不同值有在该列中的个数,同时还能根据指定得参数返回排序后结果。 返回得是Series对象 value_counts(values,sortTrue, ascendingFalse, normalizeFal…...
上岸美团了!
Hello,大家好,最近春招正在如火如荼,给大家分享一份美团的面经,作者是一份某双非的硕(只如初见668),刚刚通过了美团的3轮面试,已经拿到offer,以下是他的一些分享。 一面&…...
Gemma开源AI指南
近几个月来,谷歌推出了 Gemini 模型,在人工智能领域掀起了波澜。 现在,谷歌推出了 Gemma,再次引领创新潮流,这是向开源人工智能世界的一次变革性飞跃。 与前代产品不同,Gemma 是一款轻量级、小型模型&…...
LabVIEW智能家居安防系统
LabVIEW智能家居安防系统 随着科技的飞速发展和人们生活水平的不断提升,智能家居系统以其便利性和高效性,逐渐成为现代生活的新趋势。智能家居安防系统作为智能家居系统的重要组成部分,不仅能够提高家庭的安全性,还能为用户提供更…...
[蓝桥杯 2022 省 A] 求和
[蓝桥杯 2022 省 A] 求和 题目描述 给定 n n n 个整数 a 1 , a 2 , ⋯ , a n a_{1}, a_{2}, \cdots, a_{n} a1,a2,⋯,an, 求它们两两相乘再相加的和,即 S a 1 ⋅ a 2 a 1 ⋅ a 3 ⋯ a 1 ⋅ a n a 2 ⋅ a 3 ⋯ a n − 2 ⋅ a n − 1 a n − 2 ⋅ a…...
【C++入门】输入输出、命名空间、缺省参数、函数重载、引用、内联函数、auto、基于范围的for循环
目录 命名空间 命名空间的定义 命名空间的使用 输入输出 缺省参数 函数重载 引用 常引用 引用的使用场景 内联函数 auto 基于范围的for循环 命名空间 请看一段C语言的代码: #include <stdio.h> #include <stdlib.h>int rand 10;int main…...
Docker + Nginx 安装
安装Docker 1.防火墙 2.yum源 3.安装基础软件 更新yum源 wget -O /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-7.repo wget -O /etc/yum.repos.d/epel.repo http://mirrors.aliyun.com/repo/epel-7.repo yum clean all #清除yum源缓存 yu…...
UE RPC 外网联机(1)
技术:RPC TCP通信 设计:大厅服务<---TCP--->房间服务<---RPC--->客户端(Creator / Participator) 1. PlayerController 用于RPC通信控制 2.GameMode 用于数据同步 3.类图 4. 注意 (1)RPC&a…...
AI预测福彩3D第22弹【2024年3月31日预测--第5套算法开始计算第4次测试】
今天,咱们继续进行本套算法的测试,今天为第四次测试,仍旧是采用冷温热趋势结合AI模型进行预测。好了,废话不多说了。直接上结果~ 仍旧是分为两个方案,1大1小。 经过人工神经网络计算并进行权重赋值打分后,3…...
Django(二)-搭建第一个应用(1)
一、项目环境和结构 1、项目环境 2、项目结构 二、编写项目 1、创建模型 代码示例: import datetimefrom django.db import models from django.utils import timezone# Create your models here.class Question(models.Model):question_text models.CharField(max_length2…...
前端bugs
问题: Failed to load plugin typescript-eslint declared in package.json eslint-config-react-app#overrides[0]: Cannot find module eslint/package.json 解决: google了一晚上还得是chatgpt管用 运行以下命令【同时还要注意项目本身使用的Node版…...
MCGS学习——水位控制
要求 插入一个水罐,液位最大值为37插入一个滑动输入器,用来调节水罐水位,滑动输入器最大调节为液位最大值,并能清楚的显示出液位情况用仪表显示水位变化情况,仪表最大显示设置直观清楚方便读数,主划线为小…...
本地搭建多人协作ONLYOFFICE文档服务器并结合Cpolar内网穿透实现公网访问远程办公
文章目录 1. 安装Docker2. 本地安装部署ONLYOFFICE3. 安装cpolar内网穿透4. 固定OnlyOffice公网地址 本篇文章讲解如何使用Docker在本地服务器上安装ONLYOFFICE,并结合cpolar内网穿透实现公网访问。 Community Edition允许您在本地服务器上安装ONLYOFFICE文档&…...
Ubuntu 中电子邮件处理工具
Ubuntu 中电子邮件处理工具的综述 在现代通信技术中,电子邮件系统是不可或缺的一部分。特别是在基于 Linux 的操作系统如 Ubuntu 中,有许多高效且可靠的电子邮件处理工具可供选择。除了众所周知的 Postfix,还有其他几个重要的选项࿰…...
java多线程——运用线程同步解决线程安全问题
前言: 整理下学习笔记,打好基础,daydayup!!! 线程安全 多线程可以同时进行操作,但如果是同时操作一个共享资源的时候,可能会出现业务安全问题。 示例: 小A和小B共用一个账户,如果小A和小B同时取…...
Radio Silence for mac 好用的防火墙软件
Radio Silence for Mac是一款功能强大的网络防火墙软件,专为Mac用户设计,旨在保护用户的隐私和网络安全。它具备实时网络监视和控制功能,可以精确显示每个网络连接的状态,让用户轻松掌握网络活动情况。 软件下载:Radio…...
全国青少年软件编程(Python)等级考试一级考试真题2023年9月——持续更新.....
青少年软件编程(Python)等级考试试卷(一级) 分数:100 题数:37 一、单选题(共25题,共50分) 1.下列 Python 语句能够正确输出"学而时习之"五个字的是?( )A.print “学而时习之” B.print “(学而时习之)” C.print (“学而时习之”) D.print (学而时习之) 标…...
TCP通信——端口转发(重点内容)
实现多人群聊 Client(客户端)建立通信 package com.zz.tcp.case1;import java.io.DataOutputStream; import java.io.IOException; import java.io.OutputStream; import java.net.Socket; import java.util.Scanner;public class Client {public static void mai…...
乐乐音乐鸿蒙版-支持krc歌词(动感歌词、翻译和音译歌词)
简介 乐乐音乐主要是基于HarmonyOS开发的音乐播放器,它支持lrc歌词和动感歌词(ksc歌词、krc歌词和hrc歌词等)、多种格式歌词转换器及制作动感歌词、翻译歌词和音译歌词。 开发环境 ArkTS、Stage模型、SDK3.1、 API 9 注:没试过在真机条件下调试。 功…...
批量删除 rabbitmq中随机队列
批量删除 amq.gen–* 随机队列 操作错误产生了无效随机队列,需要批量删除 进入MQ集群中 docker psdocker exec -it c2d28e816894 /bin/bash过滤列出指定amq.gen–队列 # 列出 指定 vhost/qq 以amq.gen开头的所有队列 rabbitmqctl list_queues --vhost / | grep ^…...
循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...
VTK如何让部分单位不可见
最近遇到一个需求,需要让一个vtkDataSet中的部分单元不可见,查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行,是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示,主要是最后一个参数,透明度…...
让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...
python执行测试用例,allure报乱码且未成功生成报告
allure执行测试用例时显示乱码:‘allure’ �����ڲ����ⲿ���Ҳ���ǿ�&am…...
基于TurtleBot3在Gazebo地图实现机器人远程控制
1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式
今天是关于AI如何在教学中增强学生的学习体验,我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育,这并非炒作,而是已经发生的巨大变革。教育机构和教育者不能忽视它,试图简单地禁止学生使…...
