当前位置: 首页 > news >正文

代码随想录刷题day42| 01背包理论基础分割等和子集

文章目录

  • day41学习内容
  • 一、 01背包之二维数组解法
    • 1.1、什么是01背包
    • 1.2、动态规划五部曲
      • 1.2.1、 确定dp数组(dp table)以及下标的含义
      • 1.2.2、确定递推公式
      • 1.2.3、 dp数组如何初始化
      • 1.2.4、确定遍历顺序
      • 1.2.5、计算并返回最终结果
  • 二、 01背包之一维数组解法
    • 2.1、动态规划五部曲
      • 2.1.1、 确定dp数组(dp table)以及下标的含义
      • 2.1.2、确定递推公式
      • 2.1.3、 dp数组如何初始化
      • 2.1.4、确定遍历顺序
        • 二维动态规划
        • 从二维到一维的转化
        • 为什么要逆序更新
        • 具体示例
  • 三、 分割等和子集
    • 3.1、动态规划五部曲
      • 3.1.1、 确定dp数组(dp table)以及下标的含义
      • 3.1.2、确定递推公式
      • 3.1.3、 dp数组如何初始化
      • 3.1.4、确定遍历顺序
      • 3.1.5、计算并返回最终结果
    • 1.3、代码
  • 总结
    • 1.感想
    • 2.思维导图


day41学习内容

day41主要内容

  • 01背包之二维数组解法
  • 01背包之一维数组解法
  • 分割等和子集

声明
本文思路和文字,引用自《代码随想录》

一、 01背包之二维数组解法

1.1、什么是01背包

1.2、动态规划五部曲

1.2.1、 确定dp数组(dp table)以及下标的含义

- 考虑前i个物品,当背包容量为j时的最大价值。或者说
- 从物品0到i之间,任意取一个物品放到重量为j的背包中的最大价值

1.2.2、确定递推公式

在0-1背包问题中,dp[i][j]通常表示在考虑前i个物品,且背包容量为j时,能够获得的最大价值。当我们在处理第i个物品时,面临的选择是:放入这个物品,或者不放入这个物品。

在0-1背包问题中,递推公式通常写为:

dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i])

其中:

  • dp[i][j]:考虑前i个物品,当背包容量为j时的最大价值。
  • dp[i-1][j]:不放入第i个物品时,考虑前i-1个物品,背包容量为j的最大价值。
    • 如果选择不放入第i个物品,那么背包中的物品组合应该与考虑前i-1个物品时背包容量为j的情况相同。因为我们没有使用额外的容量来放置第i个物品,所以背包的容量和内容保持不变,相当于在做决策时忽略了第i个物品。
    • 因此,此时的公式为,dp[i-1][j],表示的是在不选择第i个物品的情况下,考虑前i-1个物品时能够获得的最大价值。这反映了一个关键的动态规划概念,即利用子问题的解来构建更大问题的解。
  • dp[i-1][j-w[i]] + v[i]:放入第i个物品时的情况,这里w[i]是第i个物品的重量,v[i]是第i个物品的价值。这表示,如果放入第i个物品,那么背包剩余容量为j-w[i],对应的最大价值应加上第i个物品的价值v[i]

1.2.3、 dp数组如何初始化

在01背包问题中,dp[i][j]表示在前i个物品中选择一些物品,使得这些物品的总重量不超过j时,这些物品的最大总价值。因此,dp[0][j]表示当没有物品可以选择时,任何容量j的背包的最大价值都是0,因为我们什么也装不进去。同样地,dp[i][0]表示当背包的容量为0时,不论有多少物品可供选择,我们都无法装入任何物品,所以最大总价值为0。

1.2.4、确定遍历顺序

从前向后遍历,没啥好说的

1.2.5、计算并返回最终结果


二、 01背包之一维数组解法

2.1、动态规划五部曲

2.1.1、 确定dp数组(dp table)以及下标的含义

-  dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。

2.1.2、确定递推公式

直接给结论

dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

2.1.3、 dp数组如何初始化

dp[0] = [0]

2.1.4、确定遍历顺序

需要逆序遍历。

二维动态规划

假设我们有两个物品,其中:

  • 物品1的重量为w[1] = 2,价值为v[1] = 3
  • 物品2的重量为w[2] = 3,价值为v[2] = 4
  • 背包的总容量为W = 5

我们使用二维数组dp[i][j]来表示考虑到第i个物品时,背包容量为j的最大价值。

初始化dp[0][j] = 0,因为没有物品时价值为0。对于每个物品i,我们遍历所有可能的背包容量j,更新dp[i][j]

从二维到一维的转化

关键点在于观察到更新dp[i][j]时,只需要前一行的信息,即dp[i-1][...]。因此,如果我们能确保在更新dp[j]时,dp[j-w[i]]总是代表加入当前物品前的状态,那么我们就可以只用一维数组来保存所有需要的信息。

为什么要逆序更新

假设我们正向更新,即j从小到大更新。当我们更新dp[j]时,dp[j-w[i]]可能已经被当前物品的加入更新过了,这意味着我们可能会错误地将同一个物品加入背包多次。

逆序更新(即j从大到小更新)确保在更新dp[j]时,dp[j-w[i]]还没有被当前物品的加入影响,因为我们还没有到达更小的j值。这样,每个物品只会被考虑加入一次。

具体示例

让我们以背包总容量W = 5为例,来具体分析这个过程。假设我们现在处理物品1(重量2,价值3)。

  • 在二维动态规划中,我们可能得到类似dp[1][j]的更新,其中j从1到5。

  • 转换为一维后,我们同样需要更新dp[j],但是逆序处理。

对于物品1,初始dp[0, 0, 0, 0, 0, 0](考虑容量从0到5)。

  • 正向考虑,如果我们先更新dp[2]为3(加入物品1),当我们到达dp[4]时,可能错误地再次考虑加入物品1,因为它看到的dp[2]已经反映了物品1的加入。

  • 逆序更新,我们从dp[5]开始往回看。当更新dp[5]时,dp[3](对应j-w[i])还未被更新,确保我们正确地只考虑加入物品1一次。

三、 分割等和子集

416.原题链接

3.1、动态规划五部曲

3.1.1、 确定dp数组(dp table)以及下标的含义

- ,dp[j]表示 背包总容量(所能装的总重量)是j,放进物品后,背的最大重量为dp[j]。

3.1.2、确定递推公式

dp[j] = Math.max(dp[j], dp[j - nums[i]] + nums[i]);

3.1.3、 dp数组如何初始化

dp[0] = 0,java中新建数组,会自动赋值所有的元素的值都为0

3.1.4、确定遍历顺序

逆序遍历

3.1.5、计算并返回最终结果

return dp[target] == target;

1.3、代码

class Solution {public boolean canPartition(int[] nums) {if(nums == null || nums.length == 0) return false;int n = nums.length;int sum = 0;for(int num : nums) {sum += num;}//总和为奇数,不能平分if(sum % 2 != 0) return false;int target = sum / 2;//开始背包逻辑int[] dp = new int[target + 1];for(int i = 0; i < n; i++) {for(int j = target; j >= nums[i]; j--) {// 此时价值为nums[i],重量也为nums[i]dp[j] = Math.max(dp[j], dp[j - nums[i]] + nums[i]);}}return dp[target] == target;}
}

总结

1.感想

  • 好难好难。。。

2.思维导图

本文思路引用自代码随想录,感谢代码随想录作者。

相关文章:

代码随想录刷题day42| 01背包理论基础分割等和子集

文章目录 day41学习内容一、 01背包之二维数组解法1.1、什么是01背包1.2、动态规划五部曲1.2.1、 确定dp数组&#xff08;dp table&#xff09;以及下标的含义1.2.2、确定递推公式1.2.3、 dp数组如何初始化1.2.4、确定遍历顺序1.2.5、计算并返回最终结果 二、 01背包之一维数组…...

Python文件操作命令

文件操作 我知道你最近很累&#xff0c;是那种看不见的、身体上和精神上的疲惫感&#xff0c;但是请你一定要坚持下去。就算无人问津也好&#xff0c;技不如人也好&#xff0c;千万别让烦躁和焦虑毁了你的热情和定力。别贪心&#xff0c;我们不可能什么都有&#xff0c;也别灰心…...

CSS面试题---基础

1、css选择器及优先级 选择器优先级&#xff1a;内联样式>id选择器>类选择器、属性选择器、伪类选择器>标签选择器、微元素选择器 注意&#xff1a; !important优先级最高&#xff1b; 如果优先级相同&#xff0c;则最后出现的样式生效&#xff1b; 继承得到的样式优先…...

OpenHarmony实战开发-分布式数据管理

​介绍 本示例展示了在eTS中分布式数据管理的使用&#xff0c;包括KVManager对象实例的创建和KVStore数据流转的使用。 通过设备管理接口ohos.distributedDeviceManager &#xff0c;实现设备之间的kvStore对象的数据传输交互&#xff0c;该对象拥有以下能力详见 ;1、注册和解…...

微服务(基础篇-007-RabbitMQ部署指南)

目录 05-RabbitMQ快速入门--介绍和安装_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1LQ4y127n4?p65&vd_source60a35a11f813c6dff0b76089e5e138cc 1.单机部署 1.1.下载镜像 1.2.安装MQ 2.集群部署 2.1.集群分类 2.2.设置网络 视频地址&#xff1a; 05-Rab…...

C语言一维数组及二维数组详解

引言&#xff1a; 小伙伴们&#xff0c;我发现我正文更新的有些慢&#xff0c;但相信我&#xff0c;每一篇文章真的都很用心在写的&#xff0c;哈哈&#xff0c;在本篇博客当中我们将详细讲解一下C语言中的数组知识&#xff0c;方便大家后续的使用&#xff0c;有不会的也可以当…...

11.图像边缘检测的原理与实现

数字图像处理(19): 边缘检测算子(Roberts算子、Prewitt算子、Sobel算子 和 Laplacian算子) 数字图像处理(20): 边缘检测算子(Canny算子) 1.边缘检测介绍 1.1 边缘检测的基本原理 边缘是图像的基本特征&#xff0c;所谓的边缘就是指的图像的局部不连续性。灰度或者结构等信息的…...

RVM安装ruby笔记

环境 硬件&#xff1a;Macbook Pro 系统&#xff1a;macOS 14.1 安装公钥 通过gpg安装公钥失败&#xff0c;报错如下&#xff1a; 换了几个公钥地址&#xff08;hkp://subkeys.pgp.net&#xff0c;hkp://keys.gnupg.net&#xff0c;hkp://pgp.mit.edu&#xff09;&#xff0c;…...

电力系统负荷预测方法

电力系统负荷是什么&#xff1f; 所谓的电力负荷预测是指以电力负荷变化以及外界因素变化为基础&#xff0c;以特定的数学方法或者建立数学模型的方式为手段&#xff0c;通过对电力负荷历史数据进行分析&#xff0c;对电力系统的需求做出估计以及研究相关因素对电力负荷的影响…...

electron打包桌面版.exe之vue项目踩坑(vue3+electron 解决打包后首页打开空白,打包后路由不跳转及请求不到后端数据等问题)

vue项目https://www.qingplus.cn/components-web/index打包桌面版问题集合 一、静态资源加载问题 npm run electron_dev桌面版运行后页面空白&#xff0c;内容未加载。 填坑&#xff1a; 打包配置要用相对路径 vite.config.ts文件中的base要改成./&#xff0c;之前加了项目…...

MySQL学习笔记(持续更行ing)

级别&#xff1a; 1. 了解&#xff0c;面试概率10% 2. 掌握&#xff0c;面试概率50% 3. 重点&#xff0c;面试概率80% 目录 1. 数据库**** 1.1. 概念**** 1.2. 分类**** 1.2.1. 关系型数据库**** 1.2.1.1. SQL**** 1.2.2. 安装**** 1.2.2.1. Navicat**** 1.2.3. 非…...

服务器配置Huggingface并git clone模型和文件

服务器配置Huggingface并git clone模型和文件 参考&#xff1a;https://huggingface.co/welcome 1 注册hugging face 官网注册&#xff0c;并获取token【https://huggingface.co/settings/tokens】&#xff0c;用于登录 2 安装 2.1 安装lfs https://stackoverflow.com/qu…...

Rust 开发的高性能 HTTP 请求工具

一、简述 在现在的软件开发领域&#xff0c;HTTP请求的快速验证变得越来越重要。特别是对于后端开发人员和测试工程师来说&#xff0c;能够快速创建、执行并验证HTTP请求对于提升开发效率至关重要。近期有一个名为Hurl的开源项目&#xff0c;它被设计来高效执行HTTP请求&#…...

Android Studio 通过 WIFI 调试手机 app

操作流程 首先第一步&#xff0c;PC 和手机都需要连在同一个局域网 WIFI。 第二步&#xff0c;手机 USB 连上 PC&#xff0c;确保能查看到通过 USB 连上的设备&#xff1a; >>adb devices List of devices attached CSXasjdhwjqwjhqdh device (最好只看到一个连上的设置…...

RabbitMQ高级笔记

视频链接&#xff1a;【黑马程序员RabbitMQ入门到实战教程】 文章目录 1.发送者的可靠性1.1.生产者重试机制1.2.生产者确认机制1.3.实现生产者确认1.3.1.开启生产者确认1.3.2.定义ReturnCallback1.3.3.定义ConfirmCallback 2.MQ的可靠性2.1.数据持久化2.1.1.交换机持久化2.1.2.…...

【Qt】QtCreator交叉编译环境配置Qt mkspec

1、问题描述 在QtCreator中配置TI AM437x的交叉编译环境后,编译时报错,错误信息如下 error: gnu/stubs-soft.h: No such file or directory2、原因分析 1)环境变量CC 搜索网络,解决方法为修改交叉编译工具目录下环境配置脚本,即执行source时的文件。 本人环境为:linux…...

点点数据K参数加密逆向分析(RPC方案跟加密算法还原)

文章目录 1. 写在前面2. 接口分析3. 断点分析4. RPC调用5. 算法还原 【&#x1f3e0;作者主页】&#xff1a;吴秋霖 【&#x1f4bc;作者介绍】&#xff1a;擅长爬虫与JS加密逆向分析&#xff01;Python领域优质创作者、CSDN博客专家、阿里云博客专家、华为云享专家。一路走来长…...

考研数学|《1800》+《660》精华搭配混合用(经验分享)

肯定不行&#xff0c;考研数学哪有这么容易的&#xff01; 先说说这两本习题册&#xff0c;李永乐老师推出的新版660题&#xff0c;相较于18年前的版本&#xff0c;难度略有降低&#xff0c;更加适合初学者。因此&#xff0c;对于处于基础阶段的学习者来说&#xff0c;新版660…...

【Redis 二】Redis客户端(Jedis、SpringDataRedis、RedisTemplate)

1. Redis客户端 Jedis 以redis命令作为方法名称&#xff0c;学习成本低&#xff0c;但是Jedis实例是线程不安全的&#xff0c;多线程环境下需要基于连接池来使用&#xff08;必须为每个线程分配独立的Jedis连接&#xff09; lettuce 基于Netty实现&#xff0c;支持同步、异步和…...

Java中Filter和Interceptor的区别

概述 本文阐述Java中Filter和Interceptor的区别。 执行顺序不同 FIlter->Servlet->Interceptor->Controller 配置方式不同 FIlter在web.xml中配置 Interceptor在spring中的配置文件中、使用注解 是否依赖servlet Filter依赖servlet&#xff0c;而Interceptor不…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

ES6从入门到精通:前言

ES6简介 ES6&#xff08;ECMAScript 2015&#xff09;是JavaScript语言的重大更新&#xff0c;引入了许多新特性&#xff0c;包括语法糖、新数据类型、模块化支持等&#xff0c;显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var&#xf…...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具&#xff0c;可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板&#xff0c;允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板&#xff0c;并通…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅&#xff08;Pub/Sub&#xff09;模式与专业的 MQ&#xff08;Message Queue&#xff09;如 Kafka、RabbitMQ 进行比较&#xff0c;核心的权衡点在于&#xff1a;简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

Redis:现代应用开发的高效内存数据存储利器

一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发&#xff0c;其初衷是为了满足他自己的一个项目需求&#xff0c;即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源&#xff0c;Redis凭借其简单易用、…...