当前位置: 首页 > news >正文

机器学习-卷积神经网络CNN中的单通道和多通道图片差异

背景

最近在使用CNN的场景中,既有单通道的图片输入需求,也有多通道的图片输入需求,因此又整理回顾了一下单通道或者多通道卷积的差别,这里记录一下探索过程。

结论

直接给出结论,单通道图片和多通道图片在经历了第一个卷积层以后,就没有单通道或者多通道的区别了,剩下的网络可以采取完全一样的结构。这也为我们使用各种各样的网络架构,resnet,Alexnet,vgg提供了方便,因为他们都是为了跑ImageNet而设计的特定输入。

图解

1.成员介绍

在CNN中涉及到的主要就是image kernel bias这三个元素。这里image表示是首层的输入,后边卷积层的impute都是前边的output,与首层操作类似,不再多说。

2.单通道图片卷积过程

可以看到,通过对应位置相乘再相加,结合bias,最终得到feature map中的一个元素,所以卷积核的一次计算只得到一个数。当卷积核刷遍整张图片以后,得到了一个完整的feature map。这个东西将作为下一层的输入,传递下去。

通常来说,我们的卷积层不会只有一个kernel,因为一个kernel只能提取图片的一类特征,我们使用CNN的目的就在于应用多个kernel学习到多个特征,下面给出使用两个kernel的例子。

每一个kernel都会来一遍上图中获得feature map的过程。最终我们会得到2个feature map,与卷积核的数量一致。

2.RGB三通道图片卷积过程

 

这里可以看到,图片从一个矩阵变为了3个,这时候kernel也变成了3个矩阵,请注意 ,这三个叫做一个kernel,但是这三个kernel共享一个bias。在卷积运算的时候,这个kernel的三个通道分别与对应的图片通道做卷积,过程与单通道处理是一样的,但是这里由于有三个通道,所以会得到3个数字,而不是之前的一个数字,但是这里的三个数字会直接相加,最终还是一个数字,所以这里就是3通道卷积的trick所在,这里是容易疑惑的一个点,搞明白就好。

多个kernel可以类比之前的单通道,总之,结论就是,不管是单通道还是三通道的首个卷积层,都会输出与kernel数量相等的feature map。且不管是不是单通道,只要图片宽高是一样的,单通道和多通道的首个卷积层过后,得到的feature map在维度上是一致的。

 

代码验证

选择了pytorch中的torch.nn.Conv2d来做验证。

1.简单介绍网络的输入参数含义

import torch.nn as nn# 定义一个二维卷积层
conv_layer = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=1, padding=1)# 假设有一个4维的输入张量 x,形状为 (batch_size, in_channels, height, width)
x = torch.randn(1, 3, 32, 32)# 在输入张量上应用卷积层
output = conv_layer(x)# 输出张量的形状为 (batch_size, out_channels, output_height, output_width)

其中,in_channels表示输入张量的通道数,out_channels表示输出张量的通道数(即卷积核的数量),kernel_size表示卷积核的大小,stride表示卷积的步长,padding表示边缘填充的大小。在输入张量上应用卷积层后,输出张量的形状为 (batch_size, out_channels, output_height, output_width)。 

2.为单通道图片设计第一个卷积层,并查看该层的输出

# 设计一个单通道的卷积网络结构
import torch
from torch.autograd import Variable
# 单通道图片模拟输入
input=torch.ones(1,1,64,64)
input=Variable(input)
x=torch.nn.Conv2d(in_channels=1,out_channels=5,kernel_size=3,groups=1)
out=x(input)
print(out.shape)
print(list(x.parameters()))

打印结果

torch.Size([1, 5, 62, 62])
[Parameter containing:
tensor([[[[-0.1166,  0.2381, -0.0446],[ 0.0855,  0.1347, -0.2986],[-0.3251,  0.2721,  0.2473]]],[[[-0.1630,  0.2612,  0.1867],[-0.1606, -0.2781, -0.1183],[ 0.2221, -0.1114, -0.2046]]],[[[-0.2414, -0.2379,  0.0680],[ 0.1928, -0.0585,  0.1804],[ 0.1891, -0.1915,  0.0281]]],[[[-0.3227,  0.0911, -0.0136],[-0.2742, -0.2246, -0.1227],[ 0.1420,  0.3284, -0.0288]]],[[[ 0.2173, -0.1299, -0.2056],[-0.2324,  0.2499, -0.1909],[ 0.2416, -0.1457, -0.1176]]]], requires_grad=True), 
Parameter containing:
tensor([-0.0273,  0.2994,  0.3226, -0.2969,  0.2965], requires_grad=True)]

这里我们可以看到,第一层的输出结果是有5个feature maps,也就是卷积核的数量。随后我们打印出了第一层的卷积参数,可以看到就是5个卷积核的参数,以及对应的五个bias参数。

3.为RGB三通道图片设计第一个卷积层,并给出参数

# 设计一个3通道的卷积网络结构
import torch
from torch.autograd import Variable
# 模拟RGB三通道图片输入
input=torch.ones(1,3,64,64)
input=Variable(input)
x=torch.nn.Conv2d(in_channels=3,out_channels=5,kernel_size=3,groups=1)
out=x(input)
print(out.shape)
print(list(x.parameters()))

打印输出

torch.Size([1, 5, 62, 62])
[Parameter containing:
tensor([[[[-0.0902, -0.0764,  0.1497],[-0.0632, -0.1014, -0.0682],[ 0.1309,  0.1173,  0.0268]],[[-0.0410, -0.1763,  0.0867],[ 0.0771, -0.0969,  0.0700],[ 0.1446, -0.0159, -0.1869]],[[-0.1278,  0.0244,  0.1861],[-0.0180,  0.0529, -0.1475],[-0.0562, -0.0487,  0.0659]]],[[[ 0.0649, -0.1758, -0.0420],[ 0.1287,  0.1500,  0.1027],[ 0.0033,  0.1565,  0.1461]],[[ 0.0645,  0.0515, -0.0729],[ 0.0900,  0.0941,  0.1813],[ 0.1846, -0.1075,  0.1861]],[[ 0.1489,  0.0536,  0.1510],[-0.1070,  0.0748,  0.1619],[ 0.1812, -0.0722,  0.1492]]],[[[-0.0450, -0.0846,  0.0761],[ 0.1049,  0.0492,  0.1556],[ 0.1301,  0.0494,  0.0136]],[[-0.1303, -0.0979, -0.0331],[ 0.0435, -0.0201, -0.1207],[ 0.1275, -0.0049, -0.0092]],[[ 0.1782,  0.1347,  0.0707],[-0.0850,  0.0585,  0.1361],[ 0.0917, -0.0156,  0.0407]]],[[[ 0.0491,  0.0752,  0.0096],[ 0.1599, -0.1281, -0.0937],[ 0.1029, -0.1467,  0.1238]],[[-0.0651, -0.1169,  0.1772],[ 0.0180,  0.1491,  0.0145],[ 0.0586,  0.1246,  0.1060]],[[-0.1220,  0.0525,  0.1046],[ 0.0069,  0.0356,  0.0152],[-0.0822, -0.1157, -0.0420]]],[[[-0.0679,  0.1752,  0.1020],[ 0.0018,  0.0721,  0.1708],[-0.0201,  0.1753,  0.0620]],[[-0.0023, -0.1203, -0.1113],[ 0.1765, -0.1914,  0.0836],[-0.0526, -0.1803, -0.0656]],[[-0.1735,  0.0795, -0.1867],[ 0.1757, -0.0261,  0.0198],[-0.1756, -0.0549, -0.0018]]]], requires_grad=True), 
Parameter containing:
tensor([-0.1727,  0.1823,  0.1416, -0.0721, -0.1219], requires_grad=True)]

可以看到,对三通道的图片处理后,输出的也是一样的形状,但是具体再看卷积核,会发现,每个卷积核都有3个通道,而且每个通道的参数是不一样的,但是他们共享一个bias。

相关文章:

机器学习-卷积神经网络CNN中的单通道和多通道图片差异

背景 最近在使用CNN的场景中,既有单通道的图片输入需求,也有多通道的图片输入需求,因此又整理回顾了一下单通道或者多通道卷积的差别,这里记录一下探索过程。 结论 直接给出结论,单通道图片和多通道图片在经历了第一…...

考研复试——计算机组成原理

文章目录计算机组成原理1. 计算机系统由哪两部分组成?计算机系统性能取决于什么?2. 冯诺依曼机的主要特点?3. 主存储器由什么组成,各部分有什么作用?4. 什么是存储单元、存储字、存储字长、存储体?5. 计算机…...

硬件设计 之摄像头分类(IR摄像头、mono摄像头、RGB摄像头、RGB-D摄像头、鱼眼摄像头)

总结一下在机器人上常用的几种摄像头,最近在组装机器人时,傻傻分不清摄像头的种类。由于本人知识有限,以下资料都是在网上搜索而来,按照摄像头的分类整理一下,供大家参考: 1.IR摄像头: IRinfr…...

PTA:C课程设计(2)

山东大学(威海)2022级大一下C习题集(2)2-5-1 字符定位函数(程序填空题)2-5-2 判断回文(程序填空题)2-6-1 数字金字塔(函数)2-6-2 使用函数求最大公约数(函数)2-6-3 使用函数求余弦函…...

第四章:面向对象编程

第四章:面向对象编程 4.1:面向过程与面向对象 面向过程(POP)与面向对象(OOP) 二者都是一种思想,面向对象是相对于面向过程而言的。面向过程,强调的是功能行为,以函数为最小单位,考虑怎么做。面向对象&…...

Linux 安装npm yarn pnpm 命令

下载安装包 node 下载地址解压压缩包 tar -Jxf node-v19.7.0-linux-x64.tar.xz -C /root/app echo "export PATH$PATH:/app/node-v16.9.0-linux-x64" >> /etc/profile source /etc/profile ln -sf /app/node-v16.9.0-linux-x64/bin/npm /usr/local/bin/ ln -…...

linux SPI驱动代码追踪

一、Linux SPI 框架概述 linux系统下的spi驱动程序从逻辑上可以分为3个部分: SPI Core:SPI Core 是 Linux 内核用来维护和管理 spi 的核心部分,SPI Core 提供操作接口,允许一个 spi master,spi driver 和 spi device 在 SPI Cor…...

Ls-dyna材料的相关学习笔记

Elastic Linear elastic materials -Isotropic:各向同性材料 -orthotropic 正交各向异性的 -anistropic 各向异性的...

Arrays方法(copyOfRange,fill)

Arrays方法 1、Arrays.copyOfRange Arrays.copyOfRange的使用方法 功能: 将数组拷贝至另外一个数组 参数: original:第一个参数为要拷贝的数组对象 from:第二个参数为拷贝的开始位置(包含) to:…...

AcWing - 蓝桥杯集训每日一题(DAY 1——DAY 5)

文章目录一、AcWing 3956. 截断数组(中等)1. 实现思路2. 实现代码二、AcWing 3729. 改变数组元素(中等)1. 实现思路2. 实现代码三、AcWing 1460. 我在哪?(简单)1. 实现思路2. 实现代码四、AcWin…...

RHCSA-文件的其他命令(3.7)

目录 文件的其他命令: 文本内容统计wc 移动和复制(cp) 移动 查找文件的路径 压缩和解压缩 .tar(归档命令) shell-命令解释器 linux中的特殊字符 查看系统上的别名:alias 历史命令(his…...

多线程update导致的mysql死锁问题处理方法

最近想起之前处理过的一个mysql 死锁问题,是在高并发下update批量更新导致的,这里探讨一下发生的原因,以及解决办法; 发生死锁的sql语句如下,其中where条件后的字段是有复合索引的。 update t_push_message_device_h…...

SpringBoot 如何保证接口安全?

为什么要保证接口安全对于互联网来说,只要你系统的接口暴露在外网,就避免不了接口安全问题。 如果你的接口在外网裸奔,只要让黑客知道接口的地址和参数就可以调用,那简直就是灾难。举个例子:你的网站用户注册的时候&am…...

英伟达驱动爆雷?CPU占用率过高怎么办?

又有一新驱动导致CPU占用率过高? 上周英伟达发布531.18显卡驱动,为大家带来了视频超分辨率技术,并为新发布的热门游戏《原子之心》提供支持。 但在安装新驱动后没过不久就有玩家反映,在游戏结束后会出现CPU占用率突然飙升到10%以…...

链表经典面试题【典中典】

💯💯💯链表经典面试题❗❗❗炒鸡经典,本篇带有图文解析,建议动手刷几遍。🟥1.反转链表🟧2.合并两个有序链表🟨3.链表分割🟩4.链表的回文结构🟦5.相交链表&…...

Java泛型深入

一. 泛型的概述和优势 泛型概述 泛型&#xff1a;是JDK5中引入的特性&#xff0c;可以在编译阶段约束操作的数据类型&#xff0c;并进行检查。泛型的格式&#xff1a;<数据类型>&#xff0c;注意&#xff1a;泛型只能支持引用数据类型。集合体系的全部接口和实现类都是…...

体验Linux USB 驱动

目录 一、USB OTG 二、I.MX6ULL USB 接口简介 硬件原理图 1、USB HUB 原理图 2 、USB OTG 原理图 三、使能驱动 1、打开 HID 驱动 2、 使能 USB 键盘和鼠标驱动 3 、使能 Linux 内核中的 SCSI 协议 4、使能 U 盘驱动 四、测试u盘 五、 Linux 内核自带 USB OTG USB 是…...

servlet 中的ServletConfig与servletContext

ServletConfig对象&#xff1a;servlet配置对象&#xff0c;主要把servlet的初始化参数封装到这个对象中。 一个网站中可能会存在多个servletConfig对象&#xff0c;一个servletConfig对象就封装了一个servlet的配置信息。 可以在web.xml中通过<init-param></init-p…...

Hadoop3.1.3单机(伪分布式配置)

参考&#xff1a;林子雨老师网站博客 Hadoop安装搭建伪分布式教程&#xff08;全面&#xff09;吐血整理 环境 Vmare12 Ubuntu16.04 创建Hadoop用户 若安装Ubuntu不是用的“hadoop”用户&#xff0c;则需要增加一个名为"hadoop"的用户 直接快捷键ctrlaltt或者点…...

HBase---浅谈HBase原理

浅谈HBase原理 文章目录浅谈HBase原理HBase定义HBase逻辑结构HBase物理存储结构TimeStampType数据模型NaneSpaceRegionRowColumnTineStampCellHBase架构MasterMaster 架构Meta 表格介绍Region ServerRegionServer 架构MemStoreWALBlockCacheZookeeperHDFSHBase写数据流程HBase读…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天&#xff0c;再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至&#xff0c;这不仅是开发者的盛宴&#xff0c;更是全球数亿苹果用户翘首以盼的科技春晚。今年&#xff0c;苹果依旧为我们带来了全家桶式的系统更新&#xff0c;包括 iOS 26、iPadOS 26…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装&#xff08;Encapsulation&#xff09; 定义&#xff1a;将数据&#xff08;属性&#xff09;和操作数据的方法绑定在一起&#xff0c;通过访问控制符&#xff08;private、protected、public&#xff09;隐藏内部实现细节。示例&#xff1a; public …...

循环冗余码校验CRC码 算法步骤+详细实例计算

通信过程&#xff1a;&#xff08;白话解释&#xff09; 我们将原始待发送的消息称为 M M M&#xff0c;依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)&#xff08;意思就是 G &#xff08; x ) G&#xff08;x) G&#xff08;x) 是已知的&#xff09;&#xff0…...

【JVM】- 内存结构

引言 JVM&#xff1a;Java Virtual Machine 定义&#xff1a;Java虚拟机&#xff0c;Java二进制字节码的运行环境好处&#xff1a; 一次编写&#xff0c;到处运行自动内存管理&#xff0c;垃圾回收的功能数组下标越界检查&#xff08;会抛异常&#xff0c;不会覆盖到其他代码…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档&#xff09;&#xff0c;如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下&#xff0c;风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

Linux nano命令的基本使用

参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时&#xff0c;显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...