算法学习——LeetCode力扣图论篇1(797. 所有可能的路径、200. 岛屿数量、695. 岛屿的最大面积)
算法学习——LeetCode力扣图论篇1

797. 所有可能的路径
797. 所有可能的路径 - 力扣(LeetCode)
描述
给你一个有 n 个节点的 有向无环图(DAG),请你找出所有从节点 0 到节点 n-1 的路径并输出(不要求按特定顺序)
graph[i] 是一个从节点 i 可以访问的所有节点的列表(即从节点 i 到节点 graph[i][j]存在一条有向边)。
示例
示例 1:

输入:graph = [[1,2],[3],[3],[]]
输出:[[0,1,3],[0,2,3]]
解释:有两条路径 0 -> 1 -> 3 和 0 -> 2 -> 3
示例 2:

输入:graph = [[4,3,1],[3,2,4],[3],[4],[]]
输出:[[0,4],[0,3,4],[0,1,3,4],[0,1,2,3,4],[0,1,4]]
提示
n == graph.length
2 <= n <= 15
0 <= graph[i][j] < n
graph[i][j] != i(即不存在自环)
graph[i] 中的所有元素 互不相同
保证输入为 有向无环图(DAG)
代码解析
class Solution {
public:vector<vector<int>> result;vector<int> path;void dfs(vector<vector<int>>& graph , int indnx){if(indnx == graph.size()-1) {path.push_back(graph.size()-1);result.push_back(path);path.pop_back();return;}for(int i=0 ; i<graph[indnx].size() ;i++){path.push_back(indnx);dfs(graph,graph[indnx][i]);path.pop_back();}return;}vector<vector<int>> allPathsSourceTarget(vector<vector<int>>& graph) {dfs(graph,0);return result;}
};
200. 岛屿数量
200. 岛屿数量 - 力扣(LeetCode)
描述
给你一个由 ‘1’(陆地)和 ‘0’(水)组成的的二维网格,请你计算网格中岛屿的数量。
岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。
此外,你可以假设该网格的四条边均被水包围。
示例
示例 1:
输入:grid = [
[“1”,“1”,“1”,“1”,“0”],
[“1”,“1”,“0”,“1”,“0”],
[“1”,“1”,“0”,“0”,“0”],
[“0”,“0”,“0”,“0”,“0”]
]
输出:1
示例 2:
输入:grid = [
[“1”,“1”,“0”,“0”,“0”],
[“1”,“1”,“0”,“0”,“0”],
[“0”,“0”,“1”,“0”,“0”],
[“0”,“0”,“0”,“1”,“1”]
]
输出:3
提示
m == grid.length
n == grid[i].length
1 <= m, n <= 300
grid[i][j] 的值为 ‘0’ 或 ‘1’
代码解析
深度优先搜索dfs
class Solution {
public:int result = 0;int m =0 ,n=0;int dir[4][2] = {0,1, 0,-1 , -1,0 , 1,0};void dfs(vector<vector<char>>& grid , vector<vector<bool>> &path , int x , int y){for(int i=0 ; i<4 ;i++){int next_x = x + dir[i][0];int next_y = y + dir[i][1];if(next_x<0||next_x>=m||next_y<0||next_y>=n) continue;else if( path[next_x][next_y] == false && grid[next_x][next_y] == '1') { path[next_x][next_y] = true;dfs(grid,path,next_x,next_y);}}return;}int numIslands(vector<vector<char>>& grid) {m = grid.size();n = grid[0].size();vector<vector<bool>> path( m , vector<bool>( n ,false) );for(int i=0 ; i<m ;i++){for(int j=0 ; j<n ;j++){if(path[i][j] == false && grid[i][j] == '1'){result++;path[i][j] = true;dfs(grid,path,i,j);}}}return result;}
};
广度优先搜索bfs
class Solution {
public:int result = 0;int m =0 ,n=0;int dir[4][2] = {0,1, 0,-1 , -1,0 , 1,0};void bfs(vector<vector<char>>& grid , vector<vector<bool>> &path , int x , int y){queue<pair<int,int>> my_que;my_que.push({x,y});path[x][y] = true;while(my_que.size() != 0){pair<int,int> cur = my_que.front();my_que.pop();for(int i=0 ; i<4 ;i++){int next_x = cur.first + dir[i][0];int next_y = cur.second + dir[i][1];if(next_x<0||next_x>=m||next_y<0||next_y>=n) continue;else if( path[next_x][next_y] == false && grid[next_x][next_y] == '1') { my_que.push({next_x,next_y});path[next_x][next_y] = true;}}}return;}int numIslands(vector<vector<char>>& grid) {m = grid.size();n = grid[0].size();vector<vector<bool>> path( m , vector<bool>( n ,false) );for(int i=0 ; i<m ;i++){for(int j=0 ; j<n ;j++){if(path[i][j] == false && grid[i][j] == '1'){result++;path[i][j] = true;bfs(grid,path,i,j);}}}return result;}
};
695. 岛屿的最大面积
695. 岛屿的最大面积 - 力扣(LeetCode)
描述
给你一个大小为 m x n 的二进制矩阵 grid 。
岛屿 是由一些相邻的 1 (代表土地) 构成的组合,这里的「相邻」要求两个 1 必须在 水平或者竖直的四个方向上 相邻。你可以假设 grid 的四个边缘都被 0(代表水)包围着。
岛屿的面积是岛上值为 1 的单元格的数目。
计算并返回 grid 中最大的岛屿面积。如果没有岛屿,则返回面积为 0 。
示例
示例 1:

输入:grid = [[0,0,1,0,0,0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1,1,1,0,0,0],[0,1,1,0,1,0,0,0,0,0,0,0,0],[0,1,0,0,1,1,0,0,1,0,1,0,0],[0,1,0,0,1,1,0,0,1,1,1,0,0],[0,0,0,0,0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1,1,1,0,0,0],[0,0,0,0,0,0,0,1,1,0,0,0,0]]
输出:6
解释:答案不应该是 11 ,因为岛屿只能包含水平或垂直这四个方向上的 1 。
示例 2:
输入:grid = [[0,0,0,0,0,0,0,0]]
输出:0
提示
m == grid.length
n == grid[i].length
1 <= m, n <= 50
grid[i][j] 为 0 或 1
代码解析
class Solution {
public:int dir[4][2] = {0,1,0,-1,-1,0,1,0};int m=0,n=0;int result = 0;int tmp_result = 0;void dfs(vector<vector<int>>& grid , vector<vector<bool>> &path , int x ,int y){for(int i=0 ; i<4 ;i++){int next_x = x + dir[i][0];int next_y = y + dir[i][1];if(next_x<0 || next_x>=m || next_y<0 || next_y>=n) continue;if(grid[next_x][next_y] == 1 && path[next_x][next_y] == false){tmp_result++;path[next_x][next_y] = true;dfs(grid,path,next_x,next_y);}}}int maxAreaOfIsland(vector<vector<int>>& grid) {m = grid.size();n = grid[0].size();vector<vector<bool>> path(m , vector<bool>( n , false ));for(int i=0 ; i<m ;i++){for(int j=0 ; j<n ;j++){if(grid[i][j] == 1 && path[i][j] == false){path[i][j] = true;tmp_result = 1;dfs(grid,path,i,j);if(tmp_result > result) result =tmp_result;}}}return result;}
};
相关文章:
算法学习——LeetCode力扣图论篇1(797. 所有可能的路径、200. 岛屿数量、695. 岛屿的最大面积)
算法学习——LeetCode力扣图论篇1 797. 所有可能的路径 797. 所有可能的路径 - 力扣(LeetCode) 描述 给你一个有 n 个节点的 有向无环图(DAG),请你找出所有从节点 0 到节点 n-1 的路径并输出(不要求按特…...
【IP组播】PIM-SM的RP、RPF校验
目录 一:PIM-SM的RP 原理概述 实验目的 实验内容 实验拓扑 1.基本配置 2.配置IGP 3.配置PIM-SM和静态RP 4.配置动态RP 5.配置Anycast RP 二: RPF校验 原理概述 实验目的 实验内容 实验拓扑 1.基本配置 2.配置IGP 3.配置PIM-DM 4.RPF校…...
前端代码规范-命名规范
命名规则 camelCase(小驼峰式命名法 —— 首字母小写)PascalCase(大驼峰式命名法 —— 首字母大写)kebab-case(短横线连接式)Snake(下划线连接式) 项目名称 项目名 全部采用小写方…...
移动端APP测试常见面试题精析
现在面试测试职位,要求非常全面,那么APP测试一般需要哪些技术呢?下面总结了APP测试常见面试题: 1.Android四大组件? Activity:描述UI,并且处理用户与机器屏幕的交互。应用程序中,一个Activity就相当于手…...
报错[Vue warn]: $listeners is readonly. $attrs is readonly.怎么解决?
代码也没有逻辑错误,但是报错 [Vue warn]: $listeners is readonly. $attrs is readonly. 情况1:多处声明了new Vue,解决方案:删除一个,用全局变量引用同一个Vue 情况2:import Vue from Vue;第二个Vue首字…...
android 14 apexd分析(1)apexd bootstrap
Apex的由来,我们都知道普通的apk我们可以通过应用商店playstore等进行更新,apex的引入是google希望也能通过playstore更新bin文件.so etc配置文件等类型文件. 这些文件的安装实际通过apexd来进行,现在我们来解析一下apexd, apexd的启动分为两个阶段,bootstrap和普通apexd启…...
C++ 中的 vector 的模拟实现【代码纯享】
文章目录 C 中的 vector 模拟实现1. vector 的基本概念2. vector 的基本操作3. vector 的模拟实现4.代码纯享5. 总结 C 中的 vector 模拟实现 在 C 中,vector 是一个非常重要的容器,它提供了动态数组的功能。在本篇博客中,我们将尝试模拟实现…...
UE4 方块排序动画
【动画效果】 入动画: 出动画: 【分析】 入动画:方块动画排序方式为Z字形,堆砌方向为X和Y轴向 出动画:方块动画排序方式为随机 【关键蓝图】 1.构建方块砌体 2.入/出动画...
网络与并发编程(一)
并发编程介绍_串行_并行_并发的区别 串行、并行与并发的区别 串行(serial):一个CPU上,按顺序完成多个任务并行(parallelism):指的是任务数小于等于cpu核数,即任务真的是一起执行的并发(concurrency):一个CPU采用时间…...
超详细工具Navicat安装教程
Navicat是一款功能强大的数据库管理工具,可用于管理多种类型的数据库,包括MySQL、MariaDB、SQL Server、SQLite、Oracle和PostgreSQL等。以下是Navicat工具的一些主要特点和功能: 一.功能介绍 跨平台支持 多种数据库支持 直观的用户界面 数据…...
RN在android/ios手机剪切图片的操作
之前写过一个React Native调用摄像头画面及拍照和保存图片到相册全流程但是这个仅限于调用摄像头拍照并保存图片,今天再写一个版本的操作,这个博客目前实现的有三点操作: 调用摄像头拍照对照片进行剪切从相册选取图片 功能上面来说有两点: 点击按钮可以对摄像头进行拍照,拍完照…...
C语言 | Leetcode C语言题解之第6题Z字形变换
题目: 题解: char * convert(char * s, int numRows){int n strlen(s), r numRows;if (r 1 || r > n) {return s;}int t r * 2 - 2;char * ans (char *)malloc(sizeof(char) * (n 1));int pos 0;for (int i 0; i < r; i) { // 枚举矩阵的…...
C 回调函数的两种使用方法
对回调(callback)函数的一点粗陋理解,在我小时候,隔壁村有家月饼小作坊(只在中秋那段时间手工制作一些月饼出售,后来好像不做了),做出的月饼是那种很传统很经典的款式,里…...
医院云HIS系统源码,二级医院、专科医院his系统源码,经扩展后能够应用于医联体/医共体
基于云计算技术的B/S架构的HIS系统,为医疗机构提供标准化的、信息化的、可共享的医疗信息管理系统,实现医患事务管理和临床诊疗管理等标准医疗管理信息系统的功能。 系统利用云计算平台的技术优势,建立统一的云HIS、云病历、云LIS࿰…...
NineData云原生智能数据管理平台新功能发布|2024年3月版
数据库 DevOps - 大功能升级 SQL 开发早期主要提供 SQL 窗口(IDE)功能,在产品经过将近两年时间的打磨,新增了大量的企业级功能,已经服务了上万开发者,覆盖了数据库设计、开发、测试、变更等生命周期的功能…...
java Web 疫苗预约管理系统用eclipse定制开发mysql数据库BS模式java编程jdbc
一、源码特点 JSP 疫苗预约管理系统是一套完善的web设计系统,对理解JSP java 编程开发语言有帮助,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。开发环境为TOMCAT7.0,eclipse开发,数据库为Mysql5.0,使…...
Qt5.14.2 揭秘Qt日志神器高效诊断程序潜在隐疾
对程序员而言,代码中的bug往往如同无影无踪的隐疾,影响着程序的健康运行。而及时有效的诊断手段则是治疗这些隐疾的良药。今天,我们将一窥Qt日志框架QLoggingCategory的神奇功效,探究它如何为你的Qt应用程序构筑坚实的诊断防火墙。…...
Mac上设置环境变量PATH
一、配置文件有哪些 在Mac系统中,环境变量的配置文件主要包括以下几个: 文件名称描述/etc/paths系统级别的配置文件,系统启动时会加载它。/etc/profile系统级别的配置文件,所有用户登录时都会读取该文件。~/.bash_profile用户级别…...
Redis 全景图(1)--- 关于 Redis 的6大模块
这是我第一次尝试以长文的形式写一篇 Redis 的总结文章。这篇文章我想写很久了,只是一直碍于我对 Redis 的掌握没有那么的好,因此迟迟未动笔。这几天,我一直在看各种不同类型的 Redis 文章,通过阅读这些文章,引发了我对…...
Lambda表达式,Stream流
文章目录 Lambda表达式作用前提函数式接口特点 语法省略模式和匿名对象类的区别 Stream流思想作用三类方法获取方法单列集合(Collection[List,Set双列集合Map(不能直接获取)数组同一类型元素(Stream中的静态方法) 常见的中间方法终结方法收集方法 Optional类 Lambda表达式 作用…...
云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...
【入坑系列】TiDB 强制索引在不同库下不生效问题
文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...
Qt Http Server模块功能及架构
Qt Http Server 是 Qt 6.0 中引入的一个新模块,它提供了一个轻量级的 HTTP 服务器实现,主要用于构建基于 HTTP 的应用程序和服务。 功能介绍: 主要功能 HTTP服务器功能: 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...
【生成模型】视频生成论文调研
工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...
2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)
安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...
三分算法与DeepSeek辅助证明是单峰函数
前置 单峰函数有唯一的最大值,最大值左侧的数值严格单调递增,最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值,最小值左侧的数值严格单调递减,最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...
关于uniapp展示PDF的解决方案
在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项: 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库: npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...
STM32---外部32.768K晶振(LSE)无法起振问题
晶振是否起振主要就检查两个1、晶振与MCU是否兼容;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容(CL)与匹配电容(CL1、CL2)的关系 2. 如何选择 CL1 和 CL…...
【Linux系统】Linux环境变量:系统配置的隐形指挥官
。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量:setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...
