当前位置: 首页 > news >正文

PyTorch之Torch Script的简单使用

一、参考资料

TorchScript 简介
Torch Script
Loading a TorchScript Model in C++
TorchScript 解读(一):初识 TorchScript
libtorch教程(一)开发环境搭建:VS+libtorch和Qt+libtorch

二、Torch Script模型格式

1. Torch Script简介

Torch Script 是一种序列化和优化 PyTorch 模型的格式,在优化过程中,一个 torch.nn.Module 模型会被转换成 Torch Script 的 torch.jit.ScriptModule 模型。通常,TorchScript 被当成一种中间表示使用。

Torch Script 的主要用途是进行模型部署,需要记录生成一个便于推理优化的 IR,对计算图的编辑通常都是面向性能提升等等,不会给模型本身添加新的功能。

模型格式支持语言适用场景
PyTorch modelPython模型训练
Torch ScriptC++模型推理,模型部署

2. 生成Torch Script模型

如何将PyTorch model格式转换为Torch Script,有两种方式: torch.jit.tracetorch.jit.script

As its name suggests, the primary interface to PyTorch is the Python programming language. While Python is a suitable and preferred language for many scenarios requiring dynamism and ease of iteration, there are equally many situations where precisely these properties of Python are unfavorable. One environment in which the latter often applies is production – the land of low latencies and strict deployment requirements. For production scenarios, C++ is very often the language of choice, even if only to bind it into another language like Java, Rust or Go. The following paragraphs will outline the path PyTorch provides to go from an existing Python model to a serialized representation that can be loaded and executed purely from C++, with no dependency on Python.

A PyTorch model’s journey from Python to C++ is enabled by Torch Script, a representation of a PyTorch model that can be understood, compiled and serialized by the Torch Script compiler. If you are starting out from an existing PyTorch model written in the vanilla “eager” API, you must first convert your model to Torch Script.

There exist two ways of converting a PyTorch model to Torch Script. The first is known as tracing, a mechanism in which the structure of the model is captured by evaluating it once using example inputs, and recording the flow of those inputs through the model. This is suitable for models that make limited use of control flow. The second approach is to add explicit annotations to your model that inform the Torch Script compiler that it may directly parse and compile your model code, subject to the constraints imposed by the Torch Script language.

2.1 trace跟踪模式

Converting to Torch Script via Tracing
How to convert your PyTorch model to TorchScript

功能:将不带控制流的模型转换为 Torch Script,并生成一个 ScriptModule 对象。

函数原型:torch.jit.trace

所谓 trace 指的是进行一次模型推理,在推理的过程中记录所有经过的计算,将这些记录整合成计算图,即模型的静态图。

trace跟踪模式的缺点是:无法识别出模型中的控制流(如循环)

To convert a PyTorch model to Torch Script via tracing, you must pass an instance of your model along with an example input to the torch.jit.trace function. This will produce a torch.jit.ScriptModule object with the trace of your model evaluation embedded in the module’s forward method.

import torch
import torchvision# An instance of your model.
model = torchvision.models.resnet18(pretrained=True)# Switch the model to eval model
model.eval()# An example input you would normally provide to your model's forward() method.
dummy_input = torch.rand(1, 3, 224, 224)# Use torch.jit.trace to generate a torch.jit.ScriptModule via tracing.
traced_script_module = torch.jit.trace(model, dummy_input)# Save the TorchScript model
traced_script_module.save("traced_resnet18_model.pt")output = traced_script_module(torch.ones(1, 3, 224, 224))# IR中间表示
print(traced_script_module.graph)
print(traced_script_module.code)# 调用traced_cell会产生与 Python 模块相同的结果
print(model(x, h))
print(traced_script_module(x, h))

2.2 script记录模式(带控制流)

功能:将带控制流的模型转换为 Torch Script,并生成一个 ScriptModule 对象。

函数原型:torch.jit.script

script记录模式,通过解析模型来正确记录所有的控制流。script记录模式直接解析网络定义的 python 代码,生成抽象语法树 AST。

Because the forward method of this module uses control flow that is dependent on the input, it is not suitable for tracing. Instead, we can convert it to a ScriptModule. In order to convert the module to the ScriptModule, one needs to compile the module with torch.jit.script as follows.

class MyModule(torch.nn.Module):def __init__(self, N, M):super(MyModule, self).__init__()self.weight = torch.nn.Parameter(torch.rand(N, M))def forward(self, input):if input.sum() > 0:output = self.weight.mv(input)else:output = self.weight + inputreturn outputmy_module = MyModule(10,20)
sm = torch.jit.script(my_module)# Save the ScriptModule
sm.save("my_module_model.pt")

2.3 trace格式转换

import torch
import torchvision
from unet import UNetmodel = UNet(3, 2) 
model.load_state_dict(torch.load("best_weights.pth"))
model.eval()example = torch.rand(1, 3, 320, 480) 
traced_script_module = torch.jit.trace(model, example)
traced_script_module.save("model.pt")

三、Loading a TorchScript Model in C++

1. C++加载 ScriptModule

创建一个简单的程序,目录结构如下所示:

example-app/CMakeLists.txtexample-app.cpp

1.1 example-app.cpp

#include <torch/script.h> // One-stop header.#include <iostream>
#include <memory>int main(int argc, const char* argv[]) {if (argc != 2) {std::cerr << "usage: example-app <path-to-exported-script-module>\n";return -1;}torch::jit::script::Module module;try {// Deserialize the ScriptModule from a file using torch::jit::load().module = torch::jit::load(argv[1]);}catch (const c10::Error& e) {std::cerr << "error loading the model\n";return -1;}std::cout << "ok\n";
}

The <torch/script.h> header encompasses all relevant includes from the LibTorch library necessary to run the example. Our application accepts the file path to a serialized PyTorch ScriptModule as its only command line argument and then proceeds to deserialize the module using the torch::jit::load() function, which takes this file path as input. In return we receive a torch::jit::script::Module object.

1.2 CMakeLists.txt

cmake_minimum_required(VERSION 3.0 FATAL_ERROR)
project(custom_ops)find_package(Torch REQUIRED)add_executable(example-app example-app.cpp)
target_link_libraries(example-app "${TORCH_LIBRARIES}")
set_property(TARGET example-app PROPERTY CXX_STANDARD 14)

1.3 编译执行

mkdir build
cd build
cmake -DCMAKE_PREFIX_PATH=/path/to/libtorch ..
cmake --build . --config Release
make

输出结果

root@4b5a67132e81:/example-app# mkdir build
root@4b5a67132e81:/example-app# cd build
root@4b5a67132e81:/example-app/build# cmake -DCMAKE_PREFIX_PATH=/path/to/libtorch ..
-- The C compiler identification is GNU 5.4.0
-- The CXX compiler identification is GNU 5.4.0
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Looking for pthread.h
-- Looking for pthread.h - found
-- Looking for pthread_create
-- Looking for pthread_create - not found
-- Looking for pthread_create in pthreads
-- Looking for pthread_create in pthreads - not found
-- Looking for pthread_create in pthread
-- Looking for pthread_create in pthread - found
-- Found Threads: TRUE
-- Configuring done
-- Generating done
-- Build files have been written to: /example-app/build
root@4b5a67132e81:/example-app/build# make
Scanning dependencies of target example-app
[ 50%] Building CXX object CMakeFiles/example-app.dir/example-app.cpp.o
[100%] Linking CXX executable example-app
[100%] Built target example-app

1.4 执行结果

If we supply the path to the traced ResNet18 model traced_resnet_model.pt we created earlier to the resulting example-app binary, we should be rewarded with a friendly “ok”. Please note, if try to run this example with my_module_model.pt you will get an error saying that your input is of an incompatible shape. my_module_model.pt expects 1D instead of 4D.

root@4b5a67132e81:/example-app/build# ./example-app <path_to_model>/traced_resnet_model.pt
ok

2. C++推理ScriptModule

main()函数中添加模型推理的代码:

// Create a vector of inputs.
std::vector<torch::jit::IValue> inputs;
inputs.push_back(torch::ones({1, 3, 224, 224}));// Execute the model and turn its output into a tensor.
at::Tensor output = module.forward(inputs).toTensor();
std::cout << output.slice(/*dim=*/1, /*start=*/0, /*end=*/5) << '\n';

编译执行

root@4b5a67132e81:/example-app/build# make
Scanning dependencies of target example-app
[ 50%] Building CXX object CMakeFiles/example-app.dir/example-app.cpp.o
[100%] Linking CXX executable example-app
[100%] Built target example-app
root@4b5a67132e81:/example-app/build# ./example-app traced_resnet_model.pt
-0.2698 -0.0381  0.4023 -0.3010 -0.0448
[ Variable[CPUFloatType]{1,5} ]

相关文章:

PyTorch之Torch Script的简单使用

一、参考资料 TorchScript 简介 Torch Script Loading a TorchScript Model in C TorchScript 解读&#xff08;一&#xff09;&#xff1a;初识 TorchScript libtorch教程&#xff08;一&#xff09;开发环境搭建&#xff1a;VSlibtorch和Qtlibtorch 二、Torch Script模型格…...

vscode 连接远程服务器 服务器无法上网 离线配置 .vscode-server

离线配置 vscode 连接远程服务器 .vscode-server 1. .vscode-server下载 使用vscode连接远程服务器时会自动下载配置.vscode-server文件夹&#xff0c;如果远程服务器无法联网&#xff0c;则需要手动下载 1&#xff09;网址&#xff1a;https://update.code.visualstudio.com…...

arm开发板移植工具mkfs.ext4

文章目录 一、前言二、手动安装e2fsprogs1、下载源码包2、解压源码3、配置4、编译5、安装 三、移植四、验证五、总结 一、前言 在buildroot菜单中&#xff0c;可以通过勾选e2fsprogs工具来安装mkfs.ext4工具&#xff1a; Target packages -> Filesystem and flash utilit…...

某盾滑块拼图验证码增强版

介绍 提示&#xff1a;文章仅供交流学习&#xff0c;严禁用于非法用途&#xff0c;如有不当可联系本人删除 最近某盾新推出了&#xff0c;滑块拼图验证码&#xff0c;如下图所示&#xff0c;这篇文章介绍怎么识别滑块距离相关。 参数attrs 通过GET请求获取的参数attrs, 决…...

这个世界万物存在只有一种关系:博弈

$上证指数(SH000001)$ 我能给各位最大的帮助可能就是第一个从红警游戏引入了情绪周期视角的概念&#xff0c;而这个概念可以帮助很多人理解市场成为一种可能性&#xff0c;如果不理解可以重新回归游戏进行反复体验&#xff0c;你体验的足够多&#xff0c;思考的足够多&#xff…...

c#让不同的工厂生产不同的“鸭肉”

任务目标 实现对周黑鸭工厂的产品生产统一管理&#xff0c;主要产品包括鸭脖和鸭翅。武汉工厂能生生产鸭脖和鸭翅&#xff0c;南京工厂只能生产鸭翅&#xff0c;长沙工厂只能生产鸭脖。 分析任务 我们需要有武汉工厂、南京工厂、长沙工厂的类&#xff0c;类中需要实现生产鸭…...

大数据分析与内存计算——Spark安装以及Hadoop操作——注意事项

一、Spark安装 1.相关链接 Spark安装和编程实践&#xff08;Spark3.4.0&#xff09;_厦大数据库实验室博客 (xmu.edu.cn) 2.安装Spark&#xff08;Local模式&#xff09; 按照文章中的步骤安装即可 遇到问题&#xff1a;xshell以及xftp不能使用 解决办法&#xff1a; 在…...

论文阅读RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection

文章目录 RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection问题笛卡尔坐标结构图Meta-Kernel Convolution RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection 论文&#xff1a;https://arxiv.org/pdf/2103.10039.pdf 代码&…...

3D模型格式转换工具HOOPS Exchange如何将3D文件加载到PRC数据结构中?

HOOPS Exchange是一款高效的数据访问工具&#xff0c;专为开发人员设计&#xff0c;用于在不同的CAD&#xff08;计算机辅助设计&#xff09;系统之间进行高保真的数据转换和交换。由Tech Soft 3D公司开发&#xff0c;它支持广泛的CAD文件格式&#xff0c;包括但不限于AutoCAD的…...

c# wpf Template ContentTemplate

1.概要 1.1 定义内容的外观 2.2 要点分析 2.代码 <Window x:Class"WpfApp2.Window1"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml"xmlns:d"http://schem…...

空和null是两回事

文章目录 前言 StringUtils1. 空&#xff08;empty&#xff09;&#xff1a;字符串&#xff1a;集合&#xff1a; 2. null&#xff1a;引用类型变量&#xff1a;基本类型变量&#xff1a; 3. isBlank总结&#xff1a; 前言 StringUtils 提示&#xff1a;这里可以添加本文要记录…...

UNIAPP(小程序)每十个文章中间一个广告

三十秒刷新一次广告 ad-intervals"30" <template><view style"margin: 30rpx;"><view class"" v-for"(item,index) in 100"><!-- 广告 --><view style"margin-bottom: 20rpx;" v-if"(inde…...

pip包安装用国内镜像源

一&#xff1a;临时用国内源 可以在使用pip的时候加参数-i https://pypi.tuna.tsinghua.edu.cn/simple 例如&#xff1a;pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyspider&#xff0c;这样就会从清华这边的镜像去安装pyspider库 清华&#xff1a;https://py…...

uniapp:小程序腾讯地图程序文件qqmap-wx-jssdk.js 文件一直找不到无法导入

先看问题&#xff1a; 在使用腾讯地图api时无法导入到qqmap-wx-jssdk.js文件 解决方法&#xff1a;1、打开qqmap-wx-jssdk.js最后一行 然后导入&#xff1a;这里是我的路径位置&#xff0c;可以根据自己的路径位置进行更改导入 最后在生命周期函数中输出&#xff1a; 运行效果…...

如何物理控制另一台电脑以及无网络用作副屏(现成设备和使用)

初级代码游戏的专栏介绍与文章目录-CSDN博客 我的github&#xff1a;codetoys&#xff0c;所有代码都将会位于ctfc库中。已经放入库中我会指出在库中的位置。 这些代码大部分以Linux为目标但部分代码是纯C的&#xff0c;可以在任何平台上使用。 控制另一台电脑有很多方法&…...

Aurora8b10b(1)IP核介绍并基于IP核进行设计

文章目录 前言一、IP核设置二、基于IP核进行设计2.1、设计框图2.2、aurora_8b10b_0模块2.3、aurora_8b10b_0_CLOCK_MODULE2.4、aurora_8b10b_0_SUPPORT_RESET_LOGIC2.5、aurora8b10b_channel模块2.6、IBUFDS_GTE2模块2.7、aurora_8b10b_0_gt_common_wrapper模块2.8、aurora8b10…...

基于Springboot的美发管理系统(有报告)。Javaee项目,springboot项目。

演示视频&#xff1a; 基于Springboot的美发管理系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&…...

最新测试技术

在软件测试领域,随着技术的不断进步和行业需求的变化,新的测试技术和方法不断涌现。以下是一些最新的测试技术,它们正在塑造着软件测试的未来: 人工智能和机器学习(AI/ML)在测试中的应用 人工智能和机器学习正在被集成到软件测试中,以提高测试的自动化水平和效率。AI可…...

【算法】初识算法

尽量不说废话 算法 一、数据结构二、排序算法三、检索算法四、字符算类型算法五、递归算法六、贪心算法七、动态规划八、归一化算法后记 我们这里指的算法&#xff0c;是作为程序员在计算机编程时运用到的算法。 算法是一个庞大的体系&#xff0c;主要包括以下内容&#xff1a;…...

HomeBrew 安装与应用

目录 前言一、安装 HomeBrew二、使用 HomeBrew1、使用 brew 查看已安装的软件包2、使用 brew 安装软件包3、使用 brew 升级已安装的软件包4、brew 还有哪些命令呢&#xff1f; 前言 在 macOS&#xff08;或Linux&#xff09;系统里&#xff0c;默认是没有软件包的管理器的&…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式&#xff0c;可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

srs linux

下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935&#xff0c;SRS管理页面端口是8080&#xff0c;可…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建

华为云FlexusDeepSeek征文&#xff5c;DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色&#xff0c;华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型&#xff0c;能助力我们轻松驾驭 DeepSeek-V3/R1&#xff0c;本文中将分享如何…...