当前位置: 首页 > news >正文

【六 (2)机器学习-EDA探索性数据分析模板】

目录

    • 文章导航
    • 一、EDA:
    • 二、导入类库
    • 三、导入数据
    • 四、查看数据类型和缺失情况
    • 五、确认目标变量和ID
    • 六、查看目标变量分布情况
    • 七、特征变量按照数据类型分成定量变量和定性变量
    • 八、查看定量变量分布情况
    • 九、查看定量变量的离散程度
    • 十、查看定量变量与目标变量关系
    • 十一、查看定性变量分布情况
    • 十二、查看定性变量与目标变量关系
    • 十三、查看定性变量对目标变量的显著性影响
    • 十四、查看定性变量和目标变量的spearman相关系数
    • 十五、查看定量变量与目标变量相关性
    • 十六、查看定性变量与目标变量相关性

文章导航

【一 简明数据分析进阶路径介绍(文章导航)】

一、EDA:

EDA(Exploratory Data Analysis)即探索性数据分析,EDA通过可视化、统计和图形化的方法,对数据集进行全面的、非形式化的初步分析,帮助分析人员了解数据的基本特征,发现数据中的规律和模式。这有助于获取对数据的直观感受和深刻理解,为后续的数据处理和建模提供基础。

二、导入类库

# 导入类库
import numpy as np
import pandas as pd
import scipy.stats as statsimport matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px  import warnings
warnings.filterwarnings('ignore')
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import RobustScalerfrom sklearn.decomposition import PCA
from sklearn.model_selection import cross_val_score, GridSearchCV, KFoldfrom sklearn.base import BaseEstimator, TransformerMixin, RegressorMixin
from sklearn.base import clone
from sklearn.linear_model import Lasso
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor, ExtraTreesRegressor
from sklearn.svm import SVR, LinearSVR
from sklearn.linear_model import ElasticNet, SGDRegressor, BayesianRidge
from sklearn.kernel_ridge import KernelRidge
from xgboost import XGBRegressor
# 显示中文
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False# pandas显示所有行和列 
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)

三、导入数据

train = pd.read_csv('./train.csv')
test = pd.read_csv('./test.csv')train.head()

四、查看数据类型和缺失情况

train.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 90615 entries, 0 to 90614
Data columns (total 10 columns):#   Column          Non-Null Count  Dtype  
---  ------          --------------  -----  0   id              90615 non-null  int64  1   Sex             90615 non-null  object 2   Length          90615 non-null  float643   Diameter        90615 non-null  float644   Height          90615 non-null  float645   Whole weight    90615 non-null  float646   Whole weight.1  90615 non-null  float647   Whole weight.2  90615 non-null  float648   Shell weight    90615 non-null  float649   Rings           90615 non-null  int64  
dtypes: float64(7), int64(2), object(1)
memory usage: 6.9+ MB

五、确认目标变量和ID

Target_features = ['Rings'] #目标变量
ID_features = ['id'] #id

六、查看目标变量分布情况

Target_counts = train[Target_features].value_counts().reset_index()  
Target_counts.columns = [Target_features[0], 'Count']  # 绘制条形图  
fig = px.bar(Target_counts,x=Target_features[0], y='Count', title=Target_features[0]+'分布')  # 遍历每个轨迹并设置文本  
def set_text(trace):  trace.text = [f"{val:.1f}" for val in trace.y]  trace.textposition = 'outside'  fig.for_each_trace(set_text)  # 显示图表  
fig.show()

在这里插入图片描述

七、特征变量按照数据类型分成定量变量和定性变量

# 移除ID和目标变量
train_columns = list(train.columns)
train_columns.remove(Target_features[0])
train_columns.remove(ID_features[0])# 特征变量按照数据类型分成定量变量和定性变量
quantitative = [feature for feature in train_columns if train.dtypes[feature] != 'object'] # 定量变量
print('定量变量')
print(quantitative)
qualitative = [feature for feature in train_columns if train.dtypes[feature] == 'object'] # 定性变量
print('定性变量')
print(qualitative)
定量变量
['Length', 'Diameter', 'Height', 'Whole weight', 'Whole weight.1', 'Whole weight.2', 'Shell weight']
定性变量
['Sex']

八、查看定量变量分布情况

# 查看定量变量分布情况
m_cont = pd.melt(train, value_vars=quantitative)
g = sns.FacetGrid(m_cont, col='variable', col_wrap=4, sharex=False, sharey=False)
g.map(sns.distplot, 'value')

在这里插入图片描述

九、查看定量变量的离散程度

# 查看定量变量的离散程度
def plot_boxplots(df):m_disc = pd.melt(df)g = sns.FacetGrid(m_disc, col='variable', col_wrap=4, sharex=False, sharey=False)g.map(sns.boxplot, 'variable', 'value', width=0.5)plt.show()plot_boxplots(train[quantitative])       

在这里插入图片描述

十、查看定量变量与目标变量关系

# 定量变量与目标变量关系图
m_cont = pd.melt(train, id_vars=Target_features[0], value_vars=quantitative)
g = sns.FacetGrid(m_cont, col='variable', col_wrap=4, sharex=False, sharey=True)
g.map(plt.scatter, 'value', Target_features[0])

在这里插入图片描述

十一、查看定性变量分布情况

# 定性变量频数统计图
m_disc = pd.melt(train, value_vars=qualitative)
g = sns.FacetGrid(m_disc, col='variable', col_wrap=4, sharex=False, sharey=False)
g.map(sns.countplot, 'value')

在这里插入图片描述

十二、查看定性变量与目标变量关系

# 定性变量与目标变量关系图
m_disc = pd.melt(train, id_vars=Target_features[0], value_vars=qualitative)
g = sns.FacetGrid(m_disc, col='variable', col_wrap=4, sharex=False, sharey=False)
g.map(sns.boxplot, 'value', Target_features[0])

在这里插入图片描述

十三、查看定性变量对目标变量的显著性影响

# 查看定性变量对目标变量的显著性影响
def anova(frame, qualitative):anv = pd.DataFrame()anv['feature'] = qualitativep_vals = []for fea in qualitative:samples = []cls = frame[fea].unique() # 变量的类别值for c in cls:c_array = frame[frame[fea]==c][Target_features[0]].valuessamples.append(c_array)p_val = stats.f_oneway(*samples)[1] # 获得p值,p值越小,对SalePrice的显著性影响越大p_vals.append(p_val)anv['pval'] = p_valsreturn anv.sort_values('pval')
a = anova(train, qualitative)
a['disparity'] = np.log(1./a['pval'].values) # 对SalePrice的影响悬殊度
plt.figure(figsize=(8, 6))
sns.barplot(x='feature', y='disparity', data=a)
plt.xticks(rotation=90)
plt.show()

在这里插入图片描述

十四、查看定性变量和目标变量的spearman相关系数

# 查看定性变量和目标变量的spearman相关系数
# 需要先把定性变量处理为数值类型
def encode(frame, feature):ordering = pd.DataFrame()ordering['val'] = frame[feature].unique()ordering.index = ordering['val']ordering['spmean'] = frame[[feature, Target_features[0]]].groupby(feature)[Target_features[0]].mean()ordering = ordering.sort_values('spmean')ordering['ordering'] = np.arange(1, ordering.shape[0]+1)ordering = ordering['ordering'].to_dict() # 返回的数据样例{category1:1, category2:2, ...}# 对frame[feature]编码for category, code_value in ordering.items():frame.loc[frame[feature]==category, feature+'_E'] = code_value
qual_encoded = []
for qual in qualitative:encode(train, qual)qual_encoded.append(qual+'_E')
# print(qual_encoded)def spearman(frame, features):spr =  pd.DataFrame()spr['feature'] = featuresspr['spearman'] = [frame[f].corr(frame[Target_features[0]], 'spearman') for f in features]spr = spr.sort_values('spearman')plt.figure(figsize=(6, 0.25*len(features)))sns.barplot(x='spearman', y='feature', data=spr)
spearman(train, quantitative+qual_encoded)

在这里插入图片描述

十五、查看定量变量与目标变量相关性

# 定量变量与目标变量相关性
# plt.figure(1, figsize=(12,9))
corrmat = train[quantitative+[Target_features[0]]].corr()
k = 10 #number of variables for heatmap
cols = corrmat.nlargest(k, Target_features[0])[Target_features[0]].index
corr = train[list(cols)].corr()
sns.set(font_scale=1.25)
sns.heatmap(corr, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={'size': 10}, yticklabels=cols.values, xticklabels=cols.values)
plt.show()

在这里插入图片描述

十六、查看定性变量与目标变量相关性

# 定性变量与目标变量相关性# plt.figure(1, figsize=(12,9))
corrmat = train[qual_encoded+[Target_features[0]]].corr()
k = 10 #number of variables for heatmap
cols = corrmat.nlargest(k, Target_features[0])[Target_features[0]].index
corr = train[list(cols)].corr()
sns.set(font_scale=1.25)
sns.heatmap(corr, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={'size': 10}, yticklabels=cols.values, xticklabels=cols.values)
plt.show()

在这里插入图片描述

相关文章:

【六 (2)机器学习-EDA探索性数据分析模板】

目录 文章导航一、EDA&#xff1a;二、导入类库三、导入数据四、查看数据类型和缺失情况五、确认目标变量和ID六、查看目标变量分布情况七、特征变量按照数据类型分成定量变量和定性变量八、查看定量变量分布情况九、查看定量变量的离散程度十、查看定量变量与目标变量关系十一…...

Java集合——Map、Set和List总结

文章目录 一、Collection二、Map、Set、List的不同三、List1、ArrayList2、LinkedList 四、Map1、HashMap2、LinkedHashMap3、TreeMap 五、Set 一、Collection Collection 的常用方法 public boolean add(E e)&#xff1a;把给定的对象添加到当前集合中 。public void clear(…...

Python TensorFlow 2.6 获取 MNIST 数据

Python TensorFlow 2.6 获取 MNIST 数据 2 Python TensorFlow 2.6 获取 MNIST 数据1.1 获取 MNIST 数据1.2 检查 MNIST 数据 2 Python 将npz数据保存为txt3 Java 获取数据并使用SVM训练4 Python 测试SVM准确度 2 Python TensorFlow 2.6 获取 MNIST 数据 1.1 获取 MNIST 数据 …...

EChart简单入门

echart的安装就细不讲了&#xff0c;直接去官网下&#xff0c;实在不会的直接用cdn,省的一番口舌。 cdn.staticfile.net/echarts/4.3.0/echarts.min.js 正入话题哈 什么是EChart&#xff1f; EChart 是一个使用 JavaScript 实现的开源可视化库&#xff0c;Echart支持多种常…...

阿里云8核32G云服务器租用优惠价格表,包括腾讯云和京东云

8核32G云服务器租用优惠价格表&#xff0c;云服务器吧yunfuwuqiba.com整理阿里云8核32G服务器、腾讯云8核32G和京东云8C32G云主机配置报价&#xff0c;腾讯云和京东云是轻量应用服务器&#xff0c;阿里云是云服务器ECS&#xff1a; 阿里云8核32G服务器 阿里云8核32G服务器价格…...

设计模式,工厂方法模式

工厂方法模式概述 工厂方法模式&#xff0c;是对简单工厂模式的进一步抽象和推广。以我个人理解&#xff0c;工厂方法模式就是对生产工厂的抽象&#xff0c;就是用一个生产工厂的工厂来进行目标对象的创建。 工厂方法模式的角色组成和简单工厂方法相比&#xff0c;创建了一个…...

WPF中嵌入3D模型通用结构

背景&#xff1a;wpf本身有提供3D的绘制&#xff0c;但是自己通过代码描绘出3D是比较困难的。3D库helix-toolkit支持调用第三方生成的模型&#xff0c;比如Blender这些&#xff0c;所以在wpf上使用3D就变得非常简单。这里是一个通过helix-toolkit库调用第三方生成的3d模型的样例…...

举个例子说明联邦学习

学习目标&#xff1a; 一周掌握 Java 入门知识 学习内容&#xff1a; 联邦学习是一种机器学习方法&#xff0c;它允许多个参与者协同训练一个共享模型&#xff0c;同时保持各自数据的隐私。 联邦学习概念&#xff08;例子&#xff09;: 假设有三家医院&#xff0c;它们都希望…...

【Python】免费的图片/图标网站

专栏文章索引&#xff1a;Python 有问题可私聊&#xff1a;QQ&#xff1a;3375119339 这里是我收集的几个免费的图片/图标网站&#xff1a; iconfont-阿里巴巴矢量图标库icon&#xff08;.ico&#xff09;INCONFINDER&#xff08;.ico&#xff09;...

Pytorch中的nn.Embedding()

模块的输入是一个索引列表&#xff0c;输出是相应的词嵌入。 Embedding.weight&#xff08;Tensor&#xff09;–形状模块&#xff08;num_embeddings&#xff0c;Embedding_dim&#xff09;的可学习权重&#xff0c;初始化自&#xff08;0&#xff0c;1&#xff09;。 也就是…...

WebSocketServer后端配置,精简版

首先需要maven配置 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId><version>2.1.3.RELEASE</version></dependency> 然后加上配置类 这段代码是一个Spri…...

Python程序设计 多重循环(二)

1.打印数字图形 输入n&#xff08;n<9)&#xff0c;输出由数字组成的直角三角图形。例如&#xff0c;输入5&#xff0c;输出图形如下 nint(input("")) #开始 for i in range(1,n1):for j in range(1,i1):print(j,end"")print()#结束 2.打印字符图形 …...

前端面试题--CSS系列(一)

CSS系列--持续更新中 1.CSS预处理器有哪些类型&#xff0c;有什么区别2.盒模型是什么&#xff0c;有哪两种类型3.css选择器有哪些&#xff0c;优先级是怎样的&#xff0c;哪些属性可以继承4. 说说em/px/rem/vh/vw的区别5.元素实现水平垂直居中的方法有哪些&#xff0c;如果元素…...

VSCode好用插件

由于现在还是使用vue2&#xff0c;所以本文只记录vue2开发中好用的插件。 美化类插件不介绍了&#xff0c;那些貌似对生产力起不到什么大的帮助&#xff0c;纯粹的“唯心主义”罢了&#xff0c;但是如果你有兴趣的话可以查看上一篇博客&#xff1a;VSCode美化 1. vuter 简介&…...

Vue3:对ref、reactive的一个性能优化API

一、情景说明 我们知道&#xff0c;在Vue3中&#xff0c;想要创建响应式的变量&#xff0c;就要用到ref、reactive来包裹一下数据即可。 但是&#xff0c;这里有个损耗性能的地方 就是&#xff0c;被它包裹的数据&#xff0c;都会构建成响应式的&#xff0c;无论多少层次&…...

Python 用pygame简简单单实现一个打砖块

# -*- coding: utf-8 -*- # # # Copyright (C) 2024 , Inc. All Rights Reserved # # # Time : 2024/3/30 14:34 # Author : 赫凯 # Email : hekaiiii163.com # File : ballgame.py # Software: PyCharm import math import randomimport pygame import sys#…...

软考113-上午题-【计算机网络】-IPv6、无线网络、Windows命令

一、IPv6 IPv6 具有长达 128 位的地址空间&#xff0c;可以彻底解决 IPv4 地址不足的问题。由于 IPv4 地址是32 位二进制&#xff0c;所能表示的IP 地址个数为 2^32 4 294 967 29640 亿&#xff0c;因而在因特网上约有 40亿个P 地址。 由 32 位的IPv4 升级至 128 位的IPv6&am…...

深入浅出 -- 系统架构之负载均衡Nginx资源压缩

一、Nginx资源压缩 建立在动静分离的基础之上&#xff0c;如果一个静态资源的Size越小&#xff0c;那么自然传输速度会更快&#xff0c;同时也会更节省带宽&#xff0c;因此我们在部署项目时&#xff0c;也可以通过Nginx对于静态资源实现压缩传输&#xff0c;一方面可以节省带宽…...

基于jsp+Spring boot+mybatis的图书管理系统设计和实现

基于jspSpring bootmybatis的图书管理系统设计和实现 博主介绍&#xff1a;多年java开发经验&#xff0c;专注Java开发、定制、远程、文档编写指导等,csdn特邀作者、专注于Java技术领域 作者主页 央顺技术团队 Java毕设项目精品实战案例《1000套》 欢迎点赞 收藏 ⭐留言 文末获…...

Pytorch转onnx

pytorch 转 onnx 模型需要函数 torch.onnx.export。 def export(model: Union[torch.nn.Module, torch.jit.ScriptModule, torch.jit.ScriptFunction],args: Union[Tuple[Any, ...], torch.Tensor],f: Union[str, io.BytesIO],export_params: bool True,verbose: bool False…...

苍穹外卖——项目搭建

一、项目介绍以及环境搭建 1.苍穹外卖项目介绍 1.1项目介绍 本项目&#xff08;苍穹外卖&#xff09;是专门为餐饮企业&#xff08;餐厅、饭店&#xff09;定制的一款软件产品&#xff0c;包括 系统管理后台 和 小程序端应用 两部分。其中系统管理后台主要提供给餐饮企业内部员…...

云原生架构(微服务、容器云、DevOps、不可变基础设施、声明式API、Serverless、Service Mesh)

前言 读完本文&#xff0c;你将对云原生下的核心概念微服务、容器云、DevOps、Immutable Infrastructure、Declarative-API、Serverless、Service Mesh 等有一个相对详细的了解&#xff0c;帮助你快速掌握云原生的核心和要点。 因题主资源有限, 这里会选用部分云服务商的组件进…...

基于重写ribbon负载实现灰度发布

项目结构如下 代码如下&#xff1a; pom&#xff1a; <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocat…...

无端科技一面(生死狙击项目组 战斗客户端 40min)

自我介绍 实习经历询问 项目询问 TCP和UDP的区别 什么情况会用到UDP 大小端 寻路算法了解多少 A*算法 场景题&#xff1a;扫雷如何随机分地雷&#xff0c;怎么安排数字显示 怎么判断一个物体在三角锥内 动作游戏中打击效果怎么处理穿模问题 八叉树了解过吗 骨骼动画…...

idea开发 java web 高校学籍管理系统bootstrap框架web结构java编程计算机网页

一、源码特点 java 高校学籍管理系统是一套完善的完整信息系统&#xff0c;结合java web开发和bootstrap UI框架完成本系统 &#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。 前段主要技术 css jq…...

linux之文件系统、inode和动静态库制作和发布

一、背景 1.没有被打开的文件都在磁盘上 --- 磁盘级文件 2.对磁盘级别的文件&#xff0c;我们的侧重点 单个文件角度 -- 这个文件在哪里&#xff0c;有多大&#xff0c;其他属性是什么&#xff1f; 站在系统角度 -- 一共有多少文件&#xff1f;各自属性在哪里&#xff1f…...

C++IO类,输入输出缓冲区,流状态

我们的程序已经使用了很多IO库设施&#xff1a; istream(输入流)类型&#xff0c;提供输入操作。ostream(输出流)类型&#xff0c;提供输出操作。cin&#xff0c;一个istream对象&#xff0c;从标准输入读取数据。写入到标准错误。cout&#xff0c;一个ostream对象&#xff0c…...

机器学习笔记 - 文字转语音技术路线简述以及相关工具不完全清单

一、TTS技术简述 今天的文本到语音转换技术(TTS)的目标已经不仅仅是让机器说话,而是让它们听起来像不同年龄和性别的人类。通常,TTS 系统合成器的质量是从不同方面进行评估的,包括合成语音的清晰度、自然度和偏好,以及人类感知因素,例如可理解性。 1、技术路线 (1)基…...

阿里云4核8G服务器ECS通用算力型u1实例优惠价格

阿里云4核8G服务器优惠价格955元一年&#xff0c;配置为ECS通用算力型u1实例&#xff08;ecs.u1-c1m2.xlarge&#xff09;4核8G配置、1M到3M带宽可选、ESSD Entry系统盘20G到40G可选&#xff0c;CPU采用Intel(R) Xeon(R) Platinum处理器&#xff0c;阿里云活动链接 aliyunfuwuq…...

Jetson nano部署Yolov8 安装Archiconda3+创建pytorch环境(详细教程+错误解决)

由于jetson nano 是aarch64架构&#xff0c;Anaconda官方不支持aarch64架构&#xff0c;所以有了一个叫“Archiconda”&#xff0c;其目的就是将conda移植到aarch64平台上 一. 下载地址Releases Archiconda/build-tools GitHub 然后安装archiconda bash Archiconda3-0.2.3…...

wordpress自动保存远程图片/seo优化实训总结

MySQL 数据库最佳学习线路脑图&#xff1a; 一、 对MySQL 的认识 认识Mysql数据库 下载安装MySQL软件 在Linux系统环境下安装MySQL MySOL体系结构与存储引擎 MySQL体系结构 Query Cache 详解存储引擎InnoDB体系结构InnoDB的三大特性. 数据库文件 参数文件参数类型错误…...

西安cms模板建站/百度竞价推广有哪些优势

软件环境 Windows 7/8/10 或其它Windows操作系统 任务栏查看网速 在任务栏显示当前使用的网络数据&#xff0c;推荐使用NetSpeedMonitor 如果是WIN7及以下系统&#xff0c;可以从这儿下载&#xff1a;https://netspeedmonitor64.en.softonic.com/ 如果是WIN8/WIN10及以上系统&a…...

研究生做网站开发/营销推广投放

冒泡算法 /*** 冒泡排序* 核心思想是相邻两两比较并交换* param array*/public static void bubbleSort(int[] array){for (int i 0; i < array.length -1 ; i) {for (int j 1; j < array.length - i; j) {if(array[j] < array[j-1]){int temp array[j];array[j] …...

如何用c 做网站/百度下载免费安装最新版

引言 async/await是非常棒的语法糖&#xff0c;可以说他是解决异步问题的最终解决方案。从字面意思来理解。async 是异步的意思&#xff0c;而 await 是 等待 &#xff0c;所以理解 async用于申明一个function是异步的&#xff0c;而 await 用于等待一个异步方法执行完成。 asy…...

wordpress购物车会员/整站优化要多少钱

在显示复杂的表格数据的时候&#xff0c;相信 Web 开发人员都碰到过显示不下的情况。RWD Table Patterns 是一个很好的响应式表格解决方案。它采用移动优先以及渐进增强的设计理念&#xff0c;在不支持响应式的浏览器会使用滚动条代替。 您可能感兴趣的相关文章创意无限&#x…...

电商网站怎么推广/深圳网站建设 手机网站建设

网络应用体系结构 客户机/服务器结构&#xff08;Client-Server,C/S&#xff09;点对点结构(peer-to-peer&#xff0c;P2P)混合结构&#xff08;Hybrid&#xff09; 1.客户机/服务器结构 服务器 7*24小时提供服务永久性访问地址/域名利用大量服务器实现可拓展性 客户机 与服…...